Skip to main content Accesibility Help

Zeros of differences of meromorphic functions


Let f be a function transcendental and meromorphic in the plane, and define g(z) by g(z) = Δf(z) = f(z + 1) − f(z). A number of results are proved concerning the existence of zeros of g(z) or g(z)/f(z), in terms of the growth and the poles of f. The results may be viewed as discrete analogues of existing theorems on the zeros of f' and f'/f.

Hide All
[1] Ablowitz, M., Halburd, R. G. and Herbst, B.. On the extension of the Painlevé property to difference equations. Nonlinearity 13 (2000), 889905.
[2] Anderson, J. M. and Clunie, J.. Slowly growing meromorphic functions. Comment. Math. Helv. 40 (1966), 267280.
[3] Barry, P. D.. On a theorem of Kjellberg. Quar t. J. Math. Oxford (2) 15 (1964), 179191.
[4] Bergweiler, W. and Eremenko, A.. On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11 (1995), 355373.
[5] Chiang, Y. M. and Feng, S. J.. On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane. Ramanujan J., to appear.
[6] Clunie, J., Eremenko, A. and Rossi, J.. On equilibrium points of logarithmic and Newtonian potentials. J. London Math. Soc. (2) 47 (1993), 309320.
[7] Eremenko, A., Langley, J. K. and Rossi, J.. On the zeros of meromorphic functions of the form . J. Anal. Math. 62 (1994), 271286.
[8] Gol'dberg, A. A. and Ostrowski, I. V.. Distribution of Values of Meromorphic Functions (Nauka, 1970).
[9] Gundersen, G.. Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. London Math. Soc. (2) 37 (1988), 88104.
[10] Halburd, R. G. and Korhonen, R.. Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314 (2006), 477487.
[11] Halburd, R. G. and Korhonen, R.. Nevanlinna theory for the difference operator. Ann. Acad. Sci. Fenn. Math., to appear.
[12] Hayman, W. K.. Slowly growing integral and subharmonic functions. Comment. Math. Helv. 34 (1960), 7584.
[13] Hayman, W. K.. Meromorphic Functions (Oxford at the Clarendon Press, 1964).
[14] Hayman, W. K.. The local growth of power series: a survey of the Wiman–Valiron method. Canad. Math. Bull. 17 (1974), 317358.
[15] Hayman, W. K.. Subharmonic Functions Vol. 2 (Academic Press, 1989).
[16] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J. and Tohge, K.. Complex difference equations of Malmquist type. Comput. Methods Funct. Theory 1 (2001), 2739.
[17] Hinchliffe, J. D.. The Bergweiler–Eremenko theorem for finite lower order. Results. Math. 43 (2003), 121128.
[18] Ishizaki, K. and Yanagihara, N.. Wiman–Valiron method for difference equations. Nagoya Math. J. 175 (2004), 75102.
[19] Jank, G. and Volkmann, L.. Einführung in die Theorie der Ganzen und Meromorphen Funktionen mit Anwendungen auf Differentialgleichungen (Birkhäuser, 1985).
[20] Miles, J. and Rossi, J.. Linear combinations of logarithmic derivatives of entire functions with applications to differential equations. Pacific J. Math. 174 (1996), 195214.
[21] Tsuji, M.. Potential Theory in Modern Function Theory (Maruzen, 1959).
[22] Valiron, G.. Lectures on the General Theory of Integral Functions (Edouard Privat, Toulouse, 1923).
[23] Whittaker, J. M.. Interpolatory Function Theory. Cambridge Tracts in Mathematics and Mathematical Physics no. 33 (Cambridge University Press, 1935).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed