Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T14:45:56.137Z Has data issue: false hasContentIssue false

Cubic Diophantine inequalities

Published online by Cambridge University Press:  26 February 2010

R. C. Baker
Affiliation:
Department of Mathematics, Brigham Young University, Provo, UT 84602, U.S.A.
J. Brüdern
Affiliation:
Mathematisches Institut A, Postfach 80-11-40, Universitàt Stuttgart, D-7051, Stuttgart, Germany.
T. D. Wooley
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003, U.S.A.
Get access

Extract

Let λ1, …, λs be nonzero real numbers and suppose that λ1s is irrational. In 1955, Davenport and Roth showed [6] that the values taken by

at integer points (x1, …, xs) are dense on the real line, provided that s≥8. In the present paper we obtain the same result with seven variables.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, R. C.. Cubic Diophantine inequalities. Mathematika, 29 (1982), 8392.Google Scholar
2.Brüdern, J.. Additive Diophantine inequalities with mixed powers I. Mathematika, 34 (1987), 124130.Google Scholar
3.Brüdern, J.. Cubic Diophantine inequalities. Mathematika, 35 (1988), 5158.Google Scholar
4.Brüdern, J.. A note on cubic exponential sums. Sém. Théorie des Nombres, Paris, 1990–1991, 2324, (S. David, ed.), Progr. Math.Google Scholar
5.Davenport, H.. On indefinite quadratic forms in many variables. Mathematika, 3 (1956), 81101.CrossRefGoogle Scholar
6.Davenport, H. and Roth, K. F.. The solubility of certain Diophantine inequalities. Mathematika, 2 (1955), 8196.Google Scholar
7.Linnik, Ju. V.. On the representation of large numbers as sums of seven cubes. Mat. Sbornik, 12 (1943), 218224.Google Scholar
8.Vaughan, R. C.. The Hardy-Littlewood method (Cambridge University Press, 1981).Google Scholar
9.Vaughan, R. C.. Some remarks on Weyl sums. Colloq. Math. Soc. Janos Bolyai, 34 (Elsevier, North-Holland, Amsterdam 1984), 15851602.Google Scholar
10.Vaughan, R. C.. On Waring's problem for cubes. J. Reine Angew. Math., 365 (1986), 122170.Google Scholar
11.Vaughan, R. C.. A new iterative method in Waring's problem, Ada Math., 162 (1989), 171.Google Scholar
12.Vaughan, R. C.. On Waring's problem for cubes II. J. London Math. Soc. (2), 39 (1989), 205218.CrossRefGoogle Scholar
13.Wooley, T. D.. Breaking classical convexity in Waring's problem: sums of cubes and quasidiagonal behaviour. Inventiones Math., to appear.Google Scholar