Published online by Cambridge University Press: 23 February 2017
Let   $X$  be a vector space and let
 $X$  be a vector space and let   $\unicode[STIX]{x1D711}:X\rightarrow \mathbb{R}\cup \{-\infty ,+\infty \}$  be an extended real-valued function. For every function
 $\unicode[STIX]{x1D711}:X\rightarrow \mathbb{R}\cup \{-\infty ,+\infty \}$  be an extended real-valued function. For every function   $f:X\rightarrow \mathbb{R}\cup \{-\infty ,+\infty \}$ , let us define the
 $f:X\rightarrow \mathbb{R}\cup \{-\infty ,+\infty \}$ , let us define the   $\unicode[STIX]{x1D711}$ -envelope of
 $\unicode[STIX]{x1D711}$ -envelope of   $f$  by
 $f$  by  $$\begin{eqnarray}f^{\unicode[STIX]{x1D711}}(x)=\sup _{y\in X}\unicode[STIX]{x1D711}(x-y)\begin{array}{@{}c@{}}-\\ \cdot \end{array}f(y),\end{eqnarray}$$
 $$\begin{eqnarray}f^{\unicode[STIX]{x1D711}}(x)=\sup _{y\in X}\unicode[STIX]{x1D711}(x-y)\begin{array}{@{}c@{}}-\\ \cdot \end{array}f(y),\end{eqnarray}$$ $\begin{array}{@{}c@{}}-\\ \\ \\ \cdot \end{array}$  denotes the lower subtraction in
 $\begin{array}{@{}c@{}}-\\ \\ \\ \cdot \end{array}$  denotes the lower subtraction in   $\mathbb{R}\cup \{-\infty ,+\infty \}$ . The main purpose of this paper is to study in great detail the properties of the important generalized conjugation map
 $\mathbb{R}\cup \{-\infty ,+\infty \}$ . The main purpose of this paper is to study in great detail the properties of the important generalized conjugation map   $f\mapsto f^{\unicode[STIX]{x1D711}}$ . When the function
 $f\mapsto f^{\unicode[STIX]{x1D711}}$ . When the function   $\unicode[STIX]{x1D711}$  is closed and convex,
 $\unicode[STIX]{x1D711}$  is closed and convex,   $\unicode[STIX]{x1D711}$ -envelopes can be expressed as Legendre–Fenchel conjugates. By particularizing with
 $\unicode[STIX]{x1D711}$ -envelopes can be expressed as Legendre–Fenchel conjugates. By particularizing with   $\unicode[STIX]{x1D711}=(1/p\unicode[STIX]{x1D706})\Vert \cdot \Vert ^{p}$ , for
 $\unicode[STIX]{x1D711}=(1/p\unicode[STIX]{x1D706})\Vert \cdot \Vert ^{p}$ , for   $\unicode[STIX]{x1D706}>0$  and
 $\unicode[STIX]{x1D706}>0$  and   $p\geqslant 1$ , this allows us to derive new expressions of the Klee envelopes with index
 $p\geqslant 1$ , this allows us to derive new expressions of the Klee envelopes with index   $\unicode[STIX]{x1D706}$  and power
 $\unicode[STIX]{x1D706}$  and power   $p$ . Links between
 $p$ . Links between   $\unicode[STIX]{x1D711}$ -envelopes and Legendre–Fenchel conjugates are also explored when
 $\unicode[STIX]{x1D711}$ -envelopes and Legendre–Fenchel conjugates are also explored when   $-\unicode[STIX]{x1D711}$  is closed and convex. The case of Moreau envelopes is examined as a particular case. In addition to the
 $-\unicode[STIX]{x1D711}$  is closed and convex. The case of Moreau envelopes is examined as a particular case. In addition to the   $\unicode[STIX]{x1D711}$ -envelopes of functions, a parallel notion of envelope is introduced for subsets of
 $\unicode[STIX]{x1D711}$ -envelopes of functions, a parallel notion of envelope is introduced for subsets of   $X$ . Given subsets
 $X$ . Given subsets   $\unicode[STIX]{x1D6EC}$ ,
 $\unicode[STIX]{x1D6EC}$ ,   $C\subset X$ , we define the
 $C\subset X$ , we define the   $\unicode[STIX]{x1D6EC}$ -envelope of
 $\unicode[STIX]{x1D6EC}$ -envelope of   $C$  as
 $C$  as   $C^{\unicode[STIX]{x1D6EC}}=\bigcap _{x\in C}(x+\unicode[STIX]{x1D6EC})$ . Connections between the transform
 $C^{\unicode[STIX]{x1D6EC}}=\bigcap _{x\in C}(x+\unicode[STIX]{x1D6EC})$ . Connections between the transform   $C\mapsto C^{\unicode[STIX]{x1D6EC}}$  and the aforestated
 $C\mapsto C^{\unicode[STIX]{x1D6EC}}$  and the aforestated   $\unicode[STIX]{x1D711}$ -conjugation are investigated.
 $\unicode[STIX]{x1D711}$ -conjugation are investigated.