Skip to main content
×
×
Home

A FLAG VECTOR OF A 3-SPHERE THAT IS NOT THE FLAG VECTOR OF A 4-POLYTOPE

  • Philip Brinkmann (a1) and Günter M. Ziegler (a2)
Abstract

We present a first example of a flag vector of a polyhedral sphere that is not the flag vector of any polytope. Namely, there is a unique $3$ -sphere with the parameters $(f_{0},f_{1},f_{2},f_{3};f_{02})=(12,40,40,12;120)$ , but this sphere is not realizable by a convex $4$ -polytope. The $3$ -sphere, which is $2$ -simple and $2$ -simplicial, was found by Werner [Linear constraints on face numbers of polytopes. PhD Thesis, TU Berlin, Germany, 2009]; we present results of a computer enumeration which imply that the sphere with these parameters is unique. We prove that it is non-polytopal in two ways: first, we show that it has no oriented matroid, and thus it is not realizable; this proof was found by computer, but can be verified by hand. The second proof is again a computer-based oriented matroid proof and shows that for exactly one of the facets this sphere does not even have a diagram based on this facet. Using the non-polytopality, we finally prove that the sphere is not even embeddable as a polytopal complex.

Copyright
References
Hide All
1. Achterberg, T., SCIP: solving constraint integer programs. Math. Program. Comput. 1(1) 2009, 141.
2. Altshuler, A. and Steinberg, L., The complete enumeration of the 4-polytopes and 3-spheres with eight vertices. Pacific J. Math. 117 1985, 116.
3. Barnette, D. W., The minimum number of vertices of a simple polytope. Israel J. Math. 10 1971, 121125.
4. Bayer, M. M., The extended f-vectors of 4-polytopes. J. Combin. Theory Ser. A 44 1987, 141151.
5. Bayer, M. M. and Billera, L. J., Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets. Invent. Math. 79 1985, 143157.
6. Billera, L. J. and Lee, C. W., A proof of the sufficiency of McMullen’s conditions for f-vectors of simplicial polytopes. J. Combin. Theory Ser. A 31 1981, 237255.
7. Björner, A., Las Vergnas, M., Sturmfels, B., White, N. and Ziegler, G. M., Oriented Matroids (Encyclopedia of Mathematics 46 ), 2nd edn., Cambridge University Press (Cambridge, 1998) , first edition: 1993.
8. Bokowski, J., Oriented matroids. In Handbook of Convex Geometry, Vol. A (eds Gruber, P. and Wills, J.), North-Holland (Amsterdam, 1993), 555602.
9. Bokowski, J., Bremner, D. and Gévay, G., Symmetric matroid polytopes and their generation. European J. Combin. 30 2009, 17581777.
10. Bokowski, J. and Richter, J., On the finding of final polynomials. European J. Combin. 11 1990, 2134.
11. Bokowski, J. and Sturmfels, B., Computational Synthetic Geometry (Lecture Notes in Mathematics 1355 ), Springer (Berlin–Heidelberg, 1989).
12. Bremner, D., mpc, Software package for matroid polytopes, 2012,http://www.cs.unb.ca/profs/bremner/software/mpc/.
13. Brinkmann, P. and Ziegler, G. M., Small -vectors of -spheres and of -polytopes. Preprint, 2016,arXiv:1610.01028.
14. Ewald, G., Combinatorial Convexity and Algebraic Geometry (Graduate Texts in Mathematics 168 ), Springer (New York, 1996).
15. Firsching, M., Realizability and inscribability for simplicial polytopes via nonlinear optimization. Preprint, 2015, arXiv:1508.02531.
16. Goodman, J. E. and Pollack, R., Upper bounds for configurations and polytopes in ℝ d . Discrete Comput. Geom. 1 1986, 219227.
17. Grünbaum, B., Convex Polytopes (Graduate Texts in Mathematics 221 ) 2nd edn. (eds Kaibel, V., Klee, V. and Ziegler, G. M.), Springer (New York, 2003) , original edition: Interscience, London, 1967.
18. Höppner, A. and Ziegler, G. M., A census of flag-vectors of 4-polytopes. In Polytopes—Combinatorics and Computation (DMV Seminars 29 ) (eds Kalai, G. and Ziegler, G. M.), Birkhäuser (Basel, 2000), 105110.
19. Kalai, G., A simple way to tell a simple polytope from its graph. J. Combin. Theory Ser. A 49 1988, 381383.
20. Kalai, G., Many triangulated spheres. Discrete Comput. Geom. 3 1988, 114.
21. McMullen, P., The numbers of faces of simplicial polytopes. Israel J. Math. 9 1971, 559570.
22. Miyata, H., Studies on classifications and constructions of combinatorial structures related to oriented matroids. PhD Thesis, University of Tokyo, 2011.
23. Moise, E. E., Geometric Topology in Dimensions 2 and 3 (Graduate Texts in Mathematics 47 ), Springer (New York, 1977).
24. Paffenholz, A., The 2s2s pages. Web page with data, 2005–2011,http://polymake.org/polytopes/paffenholz/www/2s2s.html.
25. Paffenholz, A. and Werner, A., Constructions for 4-polytopes and the cone of flag vectors. In Algebraic and Geometric Combinatorics (Contemporary Mathematics 423 ) (ed. Athanasiadis, C. A. et al. ), American Mathematical Society (Providence, RI, 2006), 283303.
26. Paffenholz, A. and Ziegler, G. M., The E t -construction for lattices, spheres and polytopes. Discrete Comput. Geom. 32 2004, 601621.
27. Pfeifle, J. and Ziegler, G. M., Many triangulated 3-spheres. Math. Ann. 330 2004, 829837.
28. Polthier, K., Hildebrandt, K., Preuss, U. and Reitebuch, U. et al. , JavaView 4.0, 1999–2013,http://www.javaview.de.
29. Stanley, R. P., The number of faces of simplicial convex polytopes. Adv. Math. 35 1980, 236238.
30. Steinitz, E., Über die Eulersche Polyederrelation. Arch. Math. Phys. (3) 11 1906, 8688.
31. Steinitz, E., Polyeder und Raumeinteilungen (Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III.1.2 9 ) (eds Meyer, W. F. and Mohrmann, H.), Teubner (Leipzig, 1922), 1139. Ch. AB12.
32. Steinitz, E. and Rademacher, H., Vorlesungen über die Theorie der Polyeder, Springer (Berlin, 1934) , reprint: Springer, 1976.
33. Werner, A., Linear constraints on face numbers of polytopes. PhD Thesis, TU Berlin, Germany, 2009. Published at https://opus4.kobv.de/.
34. Ziegler, G. M., Lectures on Polytopes (Graduate Texts in Mathematics 152 ), Springer (New York, 1995) , updated 7th printing: 2007.
35. Ziegler, G. M., Face numbers of 4-polytopes and 3-spheres. In Proc. Int. Congr. Mathematicians (ICM 2002, Beijing), Vol. III (ed. Tatsien, L.), Higher Education Press (Beijing, 2002), 625634.
36. Ziegler, G. M., Convex polytopes: extremal constructions and f-vector shapes. In Geometric Combinatorics, Proc. Park City Mathematical Institute (PCMI) 2004 (eds Miller, E., Reiner, V. and Sturmfels, B.), American Mathematical Society (Providence, RI, 2007), 617691.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed