Skip to main content Accesibility Help


  • Dong Han Kim (a1), Michał Rams (a2) and Baowei Wang (a3)

Let $\unicode[STIX]{x1D703}$ be an irrational number and $\unicode[STIX]{x1D711}:\mathbb{N}\rightarrow \mathbb{R}^{+}$ be a monotone decreasing function tending to zero. Let

$$\begin{eqnarray}E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})=\{y\in \mathbb{R}:\Vert n\unicode[STIX]{x1D703}-y\Vert <\unicode[STIX]{x1D711}(n),\text{for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$
i.e. the set of points which are approximated by the irrational rotation with respect to the error function $\unicode[STIX]{x1D711}(n)$ . In this article, we give a complete description of the Hausdorff dimension of $E_{\unicode[STIX]{x1D711}}(\unicode[STIX]{x1D703})$ for any monotone function $\unicode[STIX]{x1D711}$ and any irrational $\unicode[STIX]{x1D703}$ .

Hide All
1. Beresnevich, V. and Velani, S., A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) 2006, 971992.
2. Bernik, V. I. and Dodson, M. M., Metric Diophantine Approximation on Manifolds (Cambridge Tracts in Mathematics 137 ), Cambridge University Press (Cambridge, 1999).
3. Bugeaud, Y., A note on inhomogeneous Diophantine approximation. Glasg. Math. J. 45 2003, 105110.
4. Fan, A. and Wu, J., A note on inhomogeneous Diophantine approximation with a general error function. Glasg. Math. J. 48(2) 2006, 187191.
5. Fuchs, M. and Kim, D., On Kurzweil’s 0–1 law in inhomogeneous Diophantine approximation. Acta Arith. 173 2016, 4157.
6. Halton, J. H., The distribution of the sequence n𝜉(n = 0, 1, 2, …). Proc. Cambridge Philos. Soc. 61 1965, 665670.
7. Kim, D., Refined shrinking target property of rotations. Nonlinearity 27(9) 2014, 19851997.
8. Kuipers, L. and Niederreiter, H., Uniform Distribution of Sequences (Pure and Applied Mathematics), John Wiley & Sons (New York, 1974).
9. Kurzweil, J., On the metric theory of inhomogeneous Diophantine approximations. Studia Math. 15 1955, 84112.
10. Liao, L. and Rams, M., Inhomogeneous Diophantine approximation with general error functions. Acta Arith. 160 2013, 2535.
11. Minkowski, H., Diophantische Approximationen: Eine Einführung in die Zahlentheorie, Chelsea Publishing (New York, 1957).
12. Schmeling, J. and Troubetzkoy, S., Inhomogeneous Diophantine approximations and angular recurrence for billiards in polygons. Mat. Sb. 194 2003, 129144.
13. Tseng, J., On circle rotations and the shrinking target properties. Discrete Contin. Dyn. Syst. 20(4) 2008, 11111122.
14. Xu, J., Inhomogenous Diophantine approximation and Hausdorff dimension, PhD Thesis, Wuhan University, 2008.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed