Skip to main content
×
Home
    • Aa
    • Aa

Lattice points in lattice polytopes

  • Oleg Pikhurko (a1)
Abstract
Abstract

It is shown that, for any lattice polytope P⊂ℝd the set int (P)∩lℤd (provided that it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7)22d+1. If, moreover, P is a simplex, then this bound can be improved to 8 · (8l+7 )2d+1. As an application, new upper bounds on the volume of a lattice polytope are deduced, given its dimension and the number of sublattice points in its interior.

Copyright
References
Hide All
1.Blichfeldt H.. A new principle in the geometry of numbers with some applications. Trans. Amer. Math. Soc, 15 (1914), 227235.
2.Hensley D.. Lattice vertex polytopes with interior lattice points. Pacific. J. Math, 105 (1983). 183191.
3.Lagarias J. C. and Ziegler G. M.. Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math., 43 (1991), 10221035.
4.Lawrence J.. Finite unions of closed subgroups on the n-dimensional torus. DIM ACS Series Discrete Math. Theoret. Comput. Sci., 4 (1991), 433441.
5.Mahler K.. Ein Übertragungsprinzip für könvexe Korper. Časopis Pĕst. Mat. Fyz., 68 (1939), 93102.
6.Pikhurko O.. Lattice points inside lattice simplices. Preprint math. CO/0008028 at www. arXiv.org (includes the C source code).
7.Scott P. R.. On convex lattice polygons. Bull. Austral. Math. Soc, 15 (1976), 395399.
8.van der Corput J. G.. Verallgemeinerung einer Mordellschen Beweismethode in der Geometrie der Zahlen. Ada Arithm., 1 (1935), 6266.
9.Zaks J., Perles M. A., and Wills J. M.. On lattice polytopes having interior lattice points. Elemente Math., 37 (1982), 4446.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.