Skip to main content Accessibility help

Linear forms in the logarithms of algebraic numbers (II)

  • A. Baker (a1)


It was proved in a recent paper† that if au α1, …, αn denote non-zero algebraic numbers and if‡ logαn, …, log αn and and 2πi are linearly independent over the rationals then log α1, …, log αn are linearly independent over the field of all algebraic numbers. Further it was shown that if α1 …, αn are positive real algebraic numbers other than 1 and if β1, …, βn denote real algebraic numbers with 1, β1 …, βn linearly independent over the rationals then is transcendental.


MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed