Skip to main content
×
Home
    • Aa
    • Aa

A note on the integral points of a modular curve of level 7

  • M. A. Kenku (a1)
Abstract

Let . denote the modular curve associated with the normalizer of a non-split Cartan group of level N., where N. is an arbitrary integer. The curve is denned over Q and the corresponding scheme over ℤ[1/N] is smooth [1]. If N. is a prime, the genus formula for . is given in [5,6]. The curve . has genus 0 if N < 11 and has genus 1. Ligozat [5] has shown that the group of Q-rational points on has rank 1. If the genus g(N). is greater than 1, very little is known about the Q-rational points of . Since under simple conditions imaginary quadratic fields with class number 1 give an integral point on these curves, Serre and others have asked whether all integral points are obtained in this way [8].

Copyright
References
Hide All
1.Deligne P. and Rapoport M.. Schémas de modules des courbes elliptiques, Vol. II of the Proceedings of the International Summer School on Modular Functions, Antwerp. (1972). Lecture Notes in Mathematics., 349 (Springer, Berlin, 1973).
2.Chowla S.. Proof of a conjecture of Julia Robinson. K. norske Vidensk. Selsk. Forh., Trondheim., 34 (1961).
3.Klein F.. Gesammelte mathematische Abhandlungen, Vol. 3. (Springer, Berlin, 1923).
4.Fricke R. and Klein F.. Vorlesungen u'ber die Theorie der elliptischen Modulfunctionen, Vol. 3. (Chelsea).
5.Ligozat G.. Courbes Modulaires de Niveau 11. Proceedings of the International Conference, University of Bonn on Modular Functions of one Variable. (1976). Lecture Notes in Mathematics., 601 (Springer, Berlin, 1977).
6.Mazur B.. Rational points on modular curves. Proceedings of the International Conference, University of Bonn on Modular Functions of one Variable. (1976). Lecture Notes in Mathematics., 601 (Berlin-Heidelberg-New York, Springer, 1977).
7.Nagell T.. Sur un type particuliér d'unites algébriques. Arkiv für Mat., 8 (1969), 163184.
8.Serre J.-P.. Autour du théorème de Mordell-Weil. Pub. Math. U. Pierre et Marie Curie., No. 65.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematika
  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 81 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.