No CrossRef data available.
Published online by Cambridge University Press: 16 May 2016
We give non-trivial bounds for the bilinear sums  $$\begin{eqnarray}\mathop{\sum }_{u=1}^{U}\mathop{\sum }_{v=1}^{V}\unicode[STIX]{x1D6FC}_{u}\unicode[STIX]{x1D6FD}_{v}\,\mathbf{e}_{p}(u/f(v)),\end{eqnarray}$$
 $$\begin{eqnarray}\mathop{\sum }_{u=1}^{U}\mathop{\sum }_{v=1}^{V}\unicode[STIX]{x1D6FC}_{u}\unicode[STIX]{x1D6FD}_{v}\,\mathbf{e}_{p}(u/f(v)),\end{eqnarray}$$ $\,\mathbf{e}_{p}(z)$  is a non-trivial additive character of the prime finite field
 $\,\mathbf{e}_{p}(z)$  is a non-trivial additive character of the prime finite field   $\mathbb{F}_{p}$  of
 $\mathbb{F}_{p}$  of   $p$  elements, with integers
 $p$  elements, with integers   $U$ ,
 $U$ ,   $V$ , a polynomial
 $V$ , a polynomial   $f\in \mathbb{F}_{p}[X]$  and some complex weights
 $f\in \mathbb{F}_{p}[X]$  and some complex weights   $\{\unicode[STIX]{x1D6FC}_{u}\}$ ,
 $\{\unicode[STIX]{x1D6FC}_{u}\}$ ,   $\{\unicode[STIX]{x1D6FD}_{v}\}$ . In particular, for
 $\{\unicode[STIX]{x1D6FD}_{v}\}$ . In particular, for   $f(X)=aX+b$ , we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bounds for similar sums with multiplicative characters of
 $f(X)=aX+b$ , we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bounds for similar sums with multiplicative characters of   $\mathbb{F}_{p}$ .
 $\mathbb{F}_{p}$ .