Skip to main content


  • Frank T. Smith (a1) and Andrew S. Ellis (a2)

Interactions between a finite number of bodies and the surrounding fluid, in a channel for instance, are investigated theoretically. In the planar model here the bodies or modelled grains are thin solid bodies free to move in a nearly parallel formation within a quasi-inviscid fluid. The investigation involves numerical and analytical studies and comparisons. The three main features that appear are a linear instability about a state of uniform motion, a clashing of the bodies (or of a body with a side wall) within a finite scaled time when nonlinear interaction takes effect, and a continuum-limit description of the body–fluid interaction holding for the case of many bodies.

Hide All
[1]Ahn H., Brennen C. E. and Sabersky R. H., Analysis of the fully developed chute flow of granular materials. J. Appl. Mech. 59 (1992), 109.
[2]Ardekani A. M., Rangel R. H. and Joseph D. D., Motion of a sphere normal to a wall in a second-order fluid. J. Fluid Mech. 587 (2007), 163172.
[3]Andrew M., David M., deVeber G. and Brooker L. A., Arterial thromboembolic complications in paediatric patients. Thromb. Haemost. 78(1) (1997), 715725.
[4]Argentina A. and Mahadevan L., Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. 102(6) (2005), 18291834.
[5]Babyn P. S., Gahunia H. K. and Massicotte P., Pulmonary thromboembolism in children. Pediatr. Radiol. 35(3) (2005), 258274.
[6]Baker W. F., Diagnosis of deep venous thrombosis and pulmonary embolism. Med. Clin. North Am. 82(3) (1998), 459476.
[7]Belmonte A., Eisenberg H. and Moses E., From flutter to tumble: inertial drag and Froude similarity in falling paper. Phys. Rev. Lett. 81 (1998), 345.
[8]Bowles R. G. A. and Smith , Lifting multi-blade flows with interaction. J. Fluid Mech. 415 (2000), 203226.
[9]Bowles R. I., Dennis S. C. R., Purvis R. and Smith F. T., Multi-branching flows from one mother tube to many daughters or to a network. Philos. Trans. R. Soc. A 363 (2005), 10451055.
[10]Bowles R. I., Ovenden N. C. and Smith F. T., Multi-branching 3D flow with substantial changes in vessel shapes. J. Fluid Mech. 614 (2008), 329354.
[11]Campbell C. S., Rapid granular flows. Annu. Rev. Fluid Mech. 22 (1990), 57.
[12]Comer J. K., Kleinstreuer C. and Kim C. S., Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech. 435 (2001), 5580.
[13]Eames I., Hunt J. C. R. and Belcher S. E., Inviscid mean flow through and around groups of bodies. J. Fluid Mech. 515 (2004), 371.
[14]Ehrentraut H. and Chrzanowska A., Induced anisotropy in rapid flows of nonspherical granular materials. In Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, Vol. 11 (eds K. Hutter and N. Kirchner), Springer (Berlin, 2003), 343364.
[15]Ellis A. S., Modelling chute delivery of grains in a food-sorting process. PhD Thesis, University of London, 2007.
[16]Ellis A. S. and Smith F. T., A continuum model for a chute flow of grains. SIAM J. Appl. Math. 69(2) (2008), 305329.
[17]Fortes A. F., Joseph D. D. and Lundgren T. S., Nonlinear mechanics of fluidization of beds of spherical particles. J. Fluid Mech. 177 (1987), 467483.
[18]Gaver D. P., Halpern D. and Jensen O. E., Surfactant and airway liquid flows. In Lung Surfactant and Disorder: Lung Biology in Health and Disease (ed. K. Nag), Taylor and Francis (Boca Raton, 2005), 201.
[19]Gray J. M. N. T. and Hutter K., Pattern formation in granular media. Contin. Mech. Thermodyn. 9 (1997), 341.
[20]Guazzelli E., Sedimentation of small particles: how can such a simple problem be so difficult? C. R. Mécanique 334 (2006), 539544.
[21]Hodges S. R., Jensen O. E. and Rallison J. M., The motion of a viscous drop through a cylindrical tube. J. Fluid Mech. 501 (2004), 279301.
[22]Huppert H. E., Quantitative modelling of granular suspension flows. Philos. Trans. R. Soc. Lond. A 356 (1998), 2471.
[23]Huang P. Y., Feng J. and Joseph D. D., The turning couples on an elliptic particle settling in a vertical channel. J. Fluid Mech. 271 (1994), 116.
[24]Iguchi Y. and Kimura K., A case of brain embolism during catheter embolisation of head arteriovenous malformation. What is the mechanism of stroke? J. Neurol. Neurosurg. Psychiatry 78 (2007), 81.
[25]Jenkins J. T. and Savage S. B., A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J. Fluid Mech. 130 (1983), 187.
[26]Jenkins J. T., Boundary conditions for rapid granular flows: flat, frictional walls. J. Appl. Mech. 59 (1992), 120.
[27]Jia L.-B., Li F., Yin X.-Z. and Yin X.-Y., Coupling modes between two flapping filaments. J. Appl. Mech. 581 (2007), 199220.
[28]Jones M. A. and Smith F. T., Fluid motion for car undertrays in ground effect. J. Engrg. Math. 45 (2003), 309334.
[29]Kadanoff L. P., Built upon sand: theoretical ideas inspired by granular flows. Rev. Modern Phys. 71 (1999), 435.
[30]Koch D. L. and Hill R. J., Inertial effects in suspension and porous-media flows. Annu. Rev. Fluid Mech. 33 (2001), 619.
[31]Korobkin A. A., Impact of two bodies one of which is covered by a thin layer of liquid. J. Fluid Mech. 300 (1995), 4358.
[32]Korobkin A. A. and Ohkusu M., Impact of two circular plates one of which is floating on a thin layer of liquid. J. Engrg. Math. 50 (2004), 343358.
[33]Louge M. Y., Computer simulations of rapid granular flows of spheres interacting with a flat frictional boundary. Phys. Fluids 6 (1994), 2253.
[34]Magnaudet J. and Eames I., Dynamics of high Re bubbles in inhomogeneous flows. Annu. Rev. Fluid Mech. 32 (2000), 659708.
[35]Monetti R., Hurd A. and Kenkre V. M., Simulations for dynamics of granular mixtures in a rotating drum. Granular Matter. 3 (2001), 113.
[36]Newman J. N., Analysis of small-aspect-ratio lifting surfaces in ground effect. J. Fluid. Mech. 117 (1982), 305314.
[37]Ovenden N. C., Smith F. T. and Wu G.-X., Effects of nonsymmetry in a branching flow network. J. Engrg. Math. 63 (2008), 213239.
[38]Pancholi K., Stride E. and Edirisinghe M., Dynamics of bubble formation in highly viscous liquids. Langmuir 24 (2008), 43884393.
[39]Purvis R. and Smith F. T., Planar flow past two or more blades in ground effect. Q. J. Mech. Appl. Math. 57(1) (2004), 137160.
[40]Rajchenbach J., Granular flows. Adv. Phys. 49 (2000), 229.
[41]Schonberg J. A. and Hinch E. J., Inertial migration of a sphere in Poiseuille flow. J. Fluid Mech. 203 (1989), 517524.
[42]Secomb T. W., Skalak R., Özkaya N. and Gross J. F., Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163 (1986), 405423.
[43]Smith F. T. and Timoshin S. N., Blade-wake interactions and rotary boundary layers. Proc. R. Soc. A 452 (1996a), 13011329.
[44]Smith F. T. and Timoshin S. N., Planar flows past thin multi-blade configurations. J. Fluid Mech. 324 (1996b), 355377.
[45]Smith F. T. and Jones M. A., One-to-few and one-to-many branching tube flows. J. Fluid Mech. 423 (2000), 131.
[46]Smith F. T. and Jones M. A., AVM modelling by multi-branching tube flow: large flow rates and dual solutions. Math. Medicine Biology 20 (2003), 183204.
[47]Smith F. T., Li L. and Wu G.-X., Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482 (2003), 291318.
[48]Smith F. T., Ovenden N. C. and Purvis R., Industrial and biomedical applications. Solid Mech. Appl. 129(5) (2006), 291300.
[49]Stone H. A., Stroock A. D. and Ajdari A., Engineering flows in small devices: micro-fluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (2004), 381411.
[50]Tuck E. O., A nonlinear unsteady one-dimensional theory for wings in extreme ground effect. J. Fluid Mech. 98 (1980), 3347.
[51]Tuck E. O. and Bentwich T. M., Sliding sheets: lubrication with comparable viscous and inertia forces. J. Fluid Mech. 41 (1983), 769792.
[52]Villermaux E. and Clanet C., Life of a flapping liquid sheet. J. Fluid Mech. 462 (2002), 341363.
[53]White A. H., Mathematical modelling of the embolisation process in the treatment of arteriovenous malformations. PhD Thesis, University of London, 2008.
[54]Willetts B., Aeolian and fluvial grain transport. Philos. Trans. R. Soc. Lond. A 356 (1998), 2471.
[55]Wilson H. J. and Davis R. H., The viscosity of a dilute suspension of rough spheres. J. Fluid Mech. 421 (2000), 339.
[56]Wilson H. J. and Davis R. H., Shear stress of a monolayer of rough spheres. J. Fluid Mech. 452 (2002), 425.
[57]Xu J., Maxey M. R. and Karniadakis G. E., Numerical simulation of turbulent drag reduction using micro-bubbles. J. Fluid Mech. 468 (2002), 271281.
[58]Yang B. H., Wang J., Joseph D. D., Hu H. H., Pan T. W. and Glowinski R., Migration of a sphere in a tube flow. J. Fluid Mech. 540 (2005), 109131.
[59]Yih C.-S., Fluid mechanics of colliding plates. Phys. Fluids 17 (1974), 19361940.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 98 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th January 2018. This data will be updated every 24 hours.