No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Let K be an algebraic number field of degree n = rl + 2r2 (in the usual notation) over the rationals with discriminant d. Let ZK denote the ring of integers in K. It is usual to speak of an integer Πi ∈ Zk as an almost-prime of order l, if the principal ideal (Πi) has at most l prime ideal factors, counted according to multiplicity. Let P1, …, Pn be positive real numbers with Pk = Pk+r2, k = r1 + l, …, r1 + r2 and P = P1 … Pn ≥ 1.