Skip to main content Accessibility help
×
Home

ON WARING’S PROBLEM: TWO SQUARES AND THREE BIQUADRATES

  • John B. Friedlander (a1) and Trevor D. Wooley (a2)

Abstract

We investigate sums of mixed powers involving two squares and three biquadrates. In particular, subject to the truth of the Generalised Riemann Hypothesis and the Elliott–Halberstam conjecture, we show that all large natural numbers $n$ with $8\nmid n$ , $n\not\equiv 2~(\text{mod} ~3)$ and $n\not\equiv 14~(\text{mod} ~16)$ are the sum of two squares and three biquadrates.

Copyright

References

Hide All
1.Brüdern, J., Sums of squares and higher powers. J. Lond. Math. Soc. (2) 35 (1987), 233243.
2.Brüdern, J., A problem in additive number theory. Math. Proc. Cambridge Philos. Soc. 103 (1988), 2733.
3.Davenport, H., Analytic Methods for Diophantine Equations and Diophantine Inequalities, 2nd edn. Cambridge University Press (Cambridge, 2005).
4.Dietmann, R. and Elsholtz, C., Sums of two squares and one biquadrate. Funct. Approx. Comment. Math. 38 (2008), 233234.
5.Duke, W., Friedlander, J. B. and Iwaniec, H., Weyl sums for quadratic roots. Int. Math. Res. Not. 2012 (11) (2012), 24932549; Corrigendum, Int. Math. Res. Not. 2012(11) (2012), 2646–2648.
6.Friedlander, J. B. and Iwaniec, H., Opera de Cribro, American Mathematical Society (Providence, RI, 2010).
7.Gauss, C. F., Disquisitiones Arithmeticae (Leipzig, 1801).
8.Golubeva, E. P., On nonhomogeneous Waring equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 (1996), Anal. Teor. Chisel i Teor. Funktsii. 13, 65–68, 236; translation in J. Math. Sci. (New York) 89 (1998), 955–957.
9.Golubeva, E. P., A bound for the representability of large numbers by ternary forms, and nonhomogeneous Waring equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 357 (2008), Anal. Teor. Chisel i Teor. Funktsii. 23, 5–21, 224; translation in J. Math. Sci. (New York) 157 (2009), 543–552.
10.Hooley, C., On a new approach to various problems of Waring’s type. In Recent Progress in Analytic Number Theory, Vol. 1 (Durham, 1979), Academic Press (London–New York, 1981), 127191.
11.Hooley, C., On Waring’s problem for two squares and three cubes. J. Reine Angew. Math. 328 (1981), 161207.
12.Hooley, C., On Waring’s problem for three squares and an lth power. Asian J. Math. 4 (2000), 885903.
13.Kawada, K. and Wooley, T. D., Sums of fourth powers and related topics. J. Reine Angew. Math. 512 (1999), 173223.
14.Kawada, K. and Wooley, T. D., Davenport’s method and slim exceptional sets: the asymptotic formulae in Waring’s problem. Mathematika 56 (2010), 305321.
15.Linnik, Yu. V., Additive problems involving squares, cubes and almost primes. Acta Arith. 21 (1972), 413422.
16.Vaughan, R. C., On sums of mixed powers. J. Lond. Math. Soc. (2) 3 (1971), 677688.
17.Vaughan, R. C., On Waring’s problem for smaller exponents. Proc. Lond. Math. Soc. (3) 52 (1986), 445463.
18.Vaughan, R. C., The Hardy–Littlewood Method, 2nd edn. Cambridge University Press (Cambridge, 1997).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed