Skip to main content Accessibility help

The problem of illumination of the boundary of a convex body by affine subspaces

  • Károly Bezdek (a1)

The main result of this paper is the following theorem. If P is a convex polytope of Ed with affine symmetry, then P can be illuminated by eight (d - 3)-dimensional affine subspaces (two (d- 2)-dimensional affine subspaces, resp.) lying outside P, where d ≥ 3. For d = 3 this proves Hadwiger's conjecture for symmetric convex polyhedra namely, it shows that any convex polyhedron with affine symmetry can be covered by eight smaller homothetic polyhedra. The cornerstone of the proof is a general separation method.

Hide All
1.Bezdek, K.. Hadwiger-Levi's covering problem revisited. Progress in Discrete and Computational Geometry (Springer-Verlag). 144. To appear.
2.Boltjansky, V. G.. The problem of the illumination of the boundary of a convex body (in Russian), Izvestiya Mold. Fil. Akad. Nauk SSSR, 76 (1960), 7784.
3.Boltjansky, V. G. and Gohberg, I.. Results and Problems in Combinatorial Geometry (Cambridge Univ. Press, Cambridge, 1985).
4.Boltjansky, V. G. and Soltan, P. S.. Combinatorial Geometry of Various Classes of Convex Sets (Shtiintsa, Kishinev, 1978).
5.Gohberg, I. and Markus, A. S.. A certain problem about the covering of convex sets with homothetic ones (in Russian). Izvestiya Mold Fil. Akad. Nauk SSSR, 76 (1960), 8790.
6.Grőtschel, M., Lovász, L. and Schrijver, A.. Geometric Algorithms and Combinatorial Optimization (Springer-Verlag, Berlin-New York, 1989).
7.Hadwiger, H.. Ungelőste Probleme, Nr. 20. Elem. Math., 12 (1957), 121.
8.Hadwiger, H.. Ungelőste Probleme, Nr. 38. Elem. Math., 15 (1960), 130131.
9.Lassak, M.. Solution of Hadwiger's covering problem for centrally symmetric convex bodies of E3. J. London Math. Soc. (2), 30 (1984), 501511.
10.Lassak, M.. Covering plane convex bodies with smaller homothetical copies. Coll. Math. Soc. J. Bolyai, Vol. 48, Intuitive Geometry, (1985), 331337.
11.Lassak, M.. Covering a plane convex body by four homothetical copies with the smallest positive ratio. Geom. Dedicate, 21 (1986), 151167.
12.Lassak, M.. Covering the boundary of a convex set by tiles. Proc. Amer. Math. Soc, 104 (1988), 269272.
13.Levi, F. W.. Ein geometrisches Überdeckungsproblem. Arch. Math., 5 (1954), 476478.
14.Levi, F. W.. Überdeckung eines Eibereiches durch Parallelverschiebungen seines offenen Kerns. Arch. Math., 6 (1955), 369370.
15.McMullen, P. and Shephard, G. C.. Convexpolytopes and the upper bound conjecture (Cambridge Univ. Press, Cambridge, 1971).
16.Schramm, O.. Illuminating sets of contant width. Mathematika, 35 (1988), 180189.
17.Soltan, P. S.. Towards the problem of covering and illumination of convex sets (in Russian). Izvestiya Akad. Nauk. Mold. SSSR, (1963), 4957.
18.Soltan, P. S. and Soltan, V. P.. On the X-raying of convex bodies (in Russian). Sov. Math. Dokl, 33 (1986), 4244.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0025-5793
  • EISSN: 2041-7942
  • URL: /core/journals/mathematika
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed