We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
1
Beresnevich, V., Bernik, V. I., Dickinson, D. and Dodson, M. M., On linear manifolds for which the Khinchin approximation theorem holds. Vesti Nats Akad. Navuk Belaruis Ser. Fiz.-mat. Navuk22000, 14–17.Google Scholar
2
Baier, S. and Ghosh, A., Diophantine approximation on lines with prime constraints. Q. J. Math.66(1) 2015, 1–12.Google Scholar
3
Brüdern, J., Einführung in die analytische Zahlentheorie, Springer (Berlin and New York, 1991).Google Scholar
4
Cassels, J. W. S., An Introduction to Diophantine Approximation, Cambridge University Press (1957).Google Scholar
5
Ghosh, A., A Khintchine-type theorem for hyperplanes. J. Lond. Math. Soc. (2)72(2) 2005, 293–304.Google Scholar
6
Ghosh, A., Diophantine exponents and the Khintchine Groshev theorem. Monatsh. Math.163(3) 2011, 281–299.Google Scholar
7
Graham, S. W. and Kolesnik, G., Van der Corput’s Method of Exponential Sums(London Mathematical Society Lecture Notes Series 126), Cambridge University Press (Cambridge, 1991).CrossRefGoogle Scholar
8
Halberstam, H. and Richert, H.-R., Sieve Methods, Academic Press (New York/London, 1974).Google Scholar
9
Harman, G., Metric diophantine approximation with two restricted variables III. Two prime numbers. J. Number Theory291988, 364–375.CrossRefGoogle Scholar
10
Harman, G., Small fractional parts of additive forms. Philos. Trans. R. Soc. Lond. A3551993, 327–338.Google Scholar
11
Harman, G., Metric Number Theory(London Mathematical Society Monographs New Series, 18), Oxford University Press (Oxford, 1998).CrossRefGoogle Scholar
12
Harman, G. and Jones, H., Metrical theorems on restricted diophantine approximations to points on a curve. J. Number Theory97(1) 2002, 45–57.Google Scholar
13
Heath-Brown, D. R. and Jia, C., The distribution of 𝛼p modulo one. Proc. Lond. Math. Soc. (3)84(1) 2002, 79–104.CrossRefGoogle Scholar
14
Jones, H., Khintchins theorem in k dimensions with prime numerator and denominator. Acta Arith.992001, 205–225.CrossRefGoogle Scholar
15
Kleinbock, D., Extremal subspaces and their submanifolds. Geom. Funct. Anal.13(2) 2003, 437–466.Google Scholar
16
Matomäki, K., The distribution of 𝛼p modulo one. Math. Proc. Cambridge Philos. Soc.1472009, 267–283.Google Scholar
17
Ramachandra, K., Two remarks in prime number theory. Bull. Soc. Math. France105(4) 1977, 433–437.Google Scholar
18
Srinivasan, S., A note on |𝛼p - q|. Acta Arith.411982, 15–18.Google Scholar
19
Vaaler, J. D., Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc.121985, 183–216.Google Scholar
20
Vaughan, R. C., Sommes trigonométriques sur les nombres premiers. C. R. Acad. Sci. Paris Sér. A2851977, 981–983.Google Scholar