Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T08:34:20.785Z Has data issue: false hasContentIssue false

STABILITY OF THE PRÉKOPA–LEINDLER INEQUALITY

Published online by Cambridge University Press:  13 July 2010

Keith M. Ball
Affiliation:
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, U.K. (email: kmb@math.ucl.ac.uk)
Károly J. Böröczky
Affiliation:
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Hungary (email: carlos@renyi.hu)
Get access

Abstract

We prove a stability version of the Prékopa–Leindler inequality.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ball, K. M., Isometric embedding in L p and sections of convex sets. PhD Thesis, University of Cambridge, 1988.Google Scholar
[2]Ball, K. M., Logarithmically concave functions and sections of convex bodies. Studia Math. 88 (1988), 6984.CrossRefGoogle Scholar
[3]Ball, K. M., An elementary introduction to modern convex geometry. In Flavors of Geometry (ed. Levy, Silvio), Cambridge University Press (Cambridge, 1997), 158.Google Scholar
[4]Ball, K. M. and Böröczky, K. J., Stability of some versions of the Prékopa–Leindler inequality. Monatsh. Math.accepted.Google Scholar
[5]Barthe, F., Autour de l’inégalité de Brunn–Minkowski. Mémoire d’Habilitation, Institut de Mathématiques de Toulouse, Université Paul-Sabatier, 2008.Google Scholar
[6]Bobkov, S. G., Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999), 19031921.CrossRefGoogle Scholar
[7]Borell, C., Convex set functions in d-space. Period. Math. Hungar. 6 (1975), 111136.CrossRefGoogle Scholar
[8]Brascamp, H. J. and Lieb, E. H., On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976), 366389.CrossRefGoogle Scholar
[9]Dubuc, S., Critères de convexité et inégalités intégrales. Ann. Inst. Fourier (Grenoble) 27(1) (1977), 135165.CrossRefGoogle Scholar
[10]Esposito, L., Fusco, N. and Trombetti, C., A quantitative version of the isoperimetric inequality: the anisotropic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 (2005), 619651.Google Scholar
[11]Figalli, A., Maggi, F. and Pratelli, A., A refined Brunn–Minkowski inequality for convex sets. Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 25112519.CrossRefGoogle Scholar
[12]Figalli, A., Maggi, F. and Pratelli, A., A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. (to appear).Google Scholar
[13]Gardner, R. J., The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. 29 (2002), 335405.Google Scholar
[14]Leindler, L., On a certain converse of Hölder’s inequality. II. Acta Sci. Math. (Szeged) 33 (1972), 217223.Google Scholar
[15]Maggi, F., Some methods for studying stability in isoperimetric type problems. Bull. Amer. Math. Soc. 45 (2008), 367408.CrossRefGoogle Scholar
[16]Prékopa, A., Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. (Szeged) 32 (1971), 301316.Google Scholar
[17]Prékopa, A., On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 (1973), 335343.Google Scholar
[18]Prékopa, A., New proof for the basic theorem of logconcave measures. Alkalmaz. Mat. Lapok 1 (1975), 385389 (in Hungarian).Google Scholar
[19]Schneider, R., Convex Bodies: The Brunn–Minkowski Theory, Cambridge University Press (Cambridge, 1993).CrossRefGoogle Scholar