No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Voronoĭ conjectured that every parallelotope is affinely equivalent to a Voronoĭ polytope. For some m, a parallelotope is defined by a set of m facet vectors pi, and defines a set of m lattice vectors ti, for 1≤i≤m. It is shown that Voronoĭ's conjecture is true for an n-dimensional parallelotope P if and only if there exist scalars γi, and a positive definite n × n matrix Q such that γipi = Qti for each i. In this case, the quadratic form f(x) = xTQx is the metric form of P.