Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T10:49:54.529Z Has data issue: false hasContentIssue false

Experimental and analytical analyses of the cutting process in the deep hole drilling with BTA (Boring Trepanning Association) system

Published online by Cambridge University Press:  14 February 2014

J. Thil
Affiliation:
Université de Lorraine, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France CIRTES, Centre Européen de Prototypage et Outillage Rapide, 29 bis rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France
B. Haddag
Affiliation:
Université de Lorraine, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France
M. Nouari*
Affiliation:
Université de Lorraine, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France
C. Barlier
Affiliation:
Université de Lorraine, Laboratoire d’Energétique et de Mécanique Théorique et Appliquée, LEMTA CNRS-UMR 7563, GIP-InSIC, 27 rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France CIRTES, Centre Européen de Prototypage et Outillage Rapide, 29 bis rue d’Hellieule, 88100 Saint-Dié-des-Vosges, France
L. Papillon
Affiliation:
AREVA NP, Usine de Chalon Saint-Marcel, 71380 Saint-Marcel, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper deals with analysis of the cutting process, on a macro and micro scale, in the deep hole drilling with BTA system. An experimental procedure is developed to highlight the impact of cutting speed and feed rate on the cutting process when machining the 18MND5 steel. Parameters based on dimensional characteristics of chips are introduced to quantify the morphology of chips generated by central, intermediate and external inserts of the complex BTA drilling tool. From observation of the chips morphology (flat, curved and spiral) and the measurement of the chips width, the provenance of each chip with respect to cutting inserts is identified. Then, the Chip Compression Ratio is evaluated for each cutting condition, indicating the amount of plastic strain in chips. Thanks to the introduction of a new parameter, denoted as Chip Fragmentation Ratio, it is found that the cutting speed has a little influence, compared to the feed rate, on the chips size. Based on this quantitative analysis, the optimal range of cutting conditions for the BTA deep hole drilling is discussed. It is mentioned that although increasing the feed rate promotes the chips fragmentation and increases the material removal rate (increasing productivity), an upper limit is to determine to prevent excessive flank wear. Also, the cutting speed should be limited to avoid excessive crater wear.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

References

Richardson, R., Bhatti, R., A review of research into the role of guide pads in BTA deep-hole machining, J. Mater. Process. Technol. 110 (2001) 6169 CrossRefGoogle Scholar
Jung, J., Ni, J., Prediction of coolant pressure and volume flow rate in the gundrilling process, J. Manuf. Sci. Eng. 125 (2003) 696702 CrossRefGoogle Scholar
Frazao, J., Chandrashekhar, S., Osman, M.O.M., Sankar, T.S., On the design and development of a new BTA Tool to increase productivity and workpiece accuracy in deep hole machining, Int. J. Adv. Manuf. Technol. 1 (1986) 323 CrossRefGoogle Scholar
B.J. Griffiths, An investigation into the role of the burnishing pads in the deep hole drilling process, Ph.D. thesis of Brunel University (1982)
B.J. Griffiths, Deep hole drilling and boring, The production Engineer (1975) 98−105
Sakuma, K., Taguchi, K., Katsuki, A., Takeyama, H., Self guiding action of deep hole drilling tools, CIRP Annals – Manuf. Technol. 30 (1981) 311315 CrossRefGoogle Scholar
Sakuma, K., Taguchi, K., Katsuki, A., Study on deep-hole-drilling with solid-boring tool – the burnishing action of guide pads and their influence on hole accuracies, Bull. Japan Soc. Mech. Eng. 23 (1980) 19211928 CrossRefGoogle Scholar
Sakuma, K., Taguchi, K., Kinjo, S., Study on deep hole drilling with solid boring tools - the effect of tool material on the cutting performance, Bull. Japan Soc. Mech. Eng. 21 (1978) 532542 CrossRefGoogle Scholar
Shaw, M.C., Oxford, C.J., On the drilling of metals II – The torque and thrust in drilling, Trans. ASME 79 (1957) 139148 Google Scholar
W. Theis, O. Webber, C. Weihs, Statistics, dynamics and quality – Improving BTA-deep-hole drilling”, Technical Report 6/2004 of the SFB 475, University of Dortmund (2004)
Al-Ata, M., Hayajneh, M.T., An investigation of bell mouthing in precision hole machining with self-piloting tools, Int. J. Adv. Manuf. Technol. 43 (2009) 2232 CrossRefGoogle Scholar
Weinert, K., Bruchhaus, T., Tribological investigations into the operational behavior of self-piloting drilling tools, Wear 225−229 (1999) 925935 CrossRefGoogle Scholar
Deng, C.S., Chin, J.H., Roundness errors in BTA drilling and a model of waviness and lobing caused by resonant forced vibrations of its long drill shaft, J. Manuf. Sci. Eng. 126 (2004) 524534 CrossRefGoogle Scholar
Deng, C.S., Huang, J.C., Chin, J.H., Effects of support misalignments in deep-hole drill shafts on hole straightness, Int. J. Mach. Tools Manuf. 41 (2001) 11651188 CrossRefGoogle Scholar
Al-Hamdan, A., Effect of misalignment on the cutting force signature in drilling, J. Mater. Process. Technol. 124 (2002) 8391 CrossRefGoogle Scholar
Deng, C.S., Chin, J.H., Hole roundness in deep-hole drilling as analysed by Taguchi methods, Int. J. Adv. Manuf. Technol. 25 (2005) 420426 CrossRefGoogle Scholar
Guibert, N., Paris, H., Rech, J., A numerical simulator to predict the dynamical behavior of the self-vibratory drilling head, Int. J. Mach. Tools Manuf. 48 (2008) 644655 CrossRefGoogle Scholar
Weinert, K., Webber, O., Peters, C., On the influence of drilling depth dependent modal damping on chatter vibration in BTA deep hole drilling, CIRP Ann. – Manuf. Technol. 54 (2005) 363366 CrossRefGoogle Scholar
K. Weinert, O. Webber, M. Hüsken, J. Mehnen, W. Theis, Analysis and prediction of dynamic disturbances of the BTA deep hole drilling process, Proceedings of the Third CIRP International Seminar on Intelligent Comput. Manuf. Eng. (2002) 297−302
K. Weinert, O. Webber, M. Hüsken, J. Mehnen, Statistics and time series analyses of BTA deep hole drilling, International Conference on Non-linear Dynamics in Mechanical Processing, 2001
Messaoud, A., Weihs, C., Monitoring a deep hole drilling process by nonlinear time series modeling, J. Sound Vib. 321 (2009) 620630 CrossRefGoogle Scholar
Messaoud, A., Weihs, C., Hering, F., Detection of chatter vibration in a drilling process using multivariate control charts, Comput. Stat. Data Anal. 52 (2008) 32083219 CrossRefGoogle Scholar
Biermann, D., Sacharow, A., Wohlgemuth, K., Simulation of the BTA deep-hole drilling process, Prod. Eng. Res. Dev. 3 (2009) 339346 CrossRefGoogle Scholar
N. Raabe, O. Webber, W. Theis, Spiralling in BTA deep-hole drilling: models of varying frequencies, From Data and Information Analysis to Knowledge Engineering, Studies in Classification, Data Analysis, and Knowledge Organization (2006) 510−517
Astakhov, V.P., Osman, M.O.M., An analytical evaluation of the cutting forces in self piloting drilling using the model of shear zone with parallel boundaries. Part 1: Theory, International J. Machine Tools Manuf. 36 (1996) 11871200 CrossRefGoogle Scholar
Astakhov, V.P., Osman, M.O.M., An analytical evaluation of the cutting forces in self piloting drilling using the model of shear zone with parallel boundaries. Part 2: Application, Int. J. Machine Tools Manuf. 36 (1996) 13351345 CrossRefGoogle Scholar
Kea, F., Nib, J., Stephenson, D.A., Chip thickening in deep-hole drilling, Int. J. Machine Tools Manuf. 46 (2005) 15001507 CrossRefGoogle Scholar
Kea, F., Nib, J., Stephenson, D.A., Continuous chip formation in drilling, Int. J. Machine Tools Manuf. 45 (2005) 16521658 CrossRefGoogle Scholar
Gao, C.H., Cheng, K., Kirkwood, D., The investigation on the machining process of BTA deep hole drilling, J. Mater. Process. Technol. 107 (2000) 222227 CrossRefGoogle Scholar
J. Thil, C. Barlier, B. Haddag, Introduction au forage profond : Technologies et étude du procédé, Magazine Equip’Prod 36 (2012)
Komanduri, R., Brown, R.H., On the mechanics of chip segmentation in machining, J. Eng. Industry 103 (1981) 3351 CrossRefGoogle Scholar
Barry, J., Byrne, G., Lennon, D., Observations on chip formation and acoustic emission in machining Ti-6Al-4V Alloy, Int. J. Mach. Tools Manuf. 41 (2001) 10551070 CrossRefGoogle Scholar
Puerta Velásquez, J.D., Bolle, B., Chevrier, P., Geandier, G., Tidu, A., Metallurgical study on chips obtained by high speed machining of a Ti–6 wt.%Al–4 wt.%V alloy, Mater. Sci. Eng. A 452−453 (2007) 469474 CrossRefGoogle Scholar
Wang, Y., Li, B., G.Tu, The study on the chip formation and wear behavior for drilling forged steel S48CS1V with TiAlN-coated gun drill, Int. J. Refract. Metals Hard Mater. 30 (2012) 200207 CrossRefGoogle Scholar
Atlati, S., Haddag, B., Nouari, M., Zenasni, M., Analysis of a new Segmentation Intensity Ratio “SIR” to characterize the chip segmentation process in machining ductile metals, Int. J. Mach. Tools Manuf. 51 (2011) 687700 CrossRefGoogle Scholar
Kouadri, S., Necib, K., Atlati, S., Haddag, B., M. Nouari, Quantification of the chip segmentation in metal machining: Application to machining the aeronautical aluminium alloy AA2024-T351 with cemented carbide tools WC-Co. Int. J. Mach. Tools Manuf. 64 (2013) 102113 Google Scholar
Cotterell, M., Byrne, G., Characterisation of chip formation during orthogonal cutting of titanium alloy TI-6Al-4V, CIRP J. Manuf. Sci. Technol. 1 (2008) 8185 CrossRefGoogle Scholar
Davies, M.A., Burns, T.J., Evans, C.J., On the dynamics of chip formation in machining hard metals, Ann. ClRP 46 (1997) 2530 CrossRefGoogle Scholar
Davies, M.A., Chou, Y., Evans, C.J., On chip morphology, tool wear and cutting mechanics in finish hard turning, Ann. ClRP 45 (1996) 7782 CrossRefGoogle Scholar
Zhanqiang, L., Guosheng, S., Characteristics of chip evolution with elevating cutting speed from low to very high, Int. J. Mach. Tools Manuf. 54−55 (2012) 8285 CrossRefGoogle Scholar
Sun, S., Brandt, M., Dargusch, M.S., Characteristics of cutting forces and chip formation in machining of titanium alloys, Int. J. Mach. Tools Manuf. 49 (2009) 561568 CrossRefGoogle Scholar
Farid, A. Akhavan, Sharif, S., Idris, M.H., Chip morphology study in high speed drilling of Al–Si alloy, Int. J. Adv. Manuf. Technol. 57 (2011) 555564 CrossRefGoogle Scholar
Barry, J., Byrne, G., The mechanisms of chip formation in machining hardened steels, J. Manuf. Sci. Eng. 124 (2002) 528535 CrossRefGoogle Scholar
Bayoumi, A.E., Xie, J.Q., Some metallurgical aspects of chip formation in cutting Ti–6 wt%Al–4 wt%V alloy, Mater. Sci. Eng. A 190 (1995) 173180 CrossRefGoogle Scholar
Shaw, M.C., Vyas, A., The mechanism of chip formation with hard turning steel, CIRP Ann. Manuf. Technol. 47 (1998) 7782 CrossRefGoogle Scholar
Astakhov, V.P., Shvets, S., The assessment of plastic deformation in metal cutting, J. Materials Process. Technol. 146 (2004) 193202 CrossRefGoogle Scholar
SANDVIK Coromant, Deep hole drilling, Product catalogue and application guide (2003)
Bordet, S.R., Tanguy, B., Besson, J., Bugat, S., Moinereau, D., Pineau, A., Cleavage fracture of RPV steel following warm pre-stressing: micromechanical analysis and interpretation through a new model, Fatigue Fract. Engng. Mater. Struct. 29 (2006) 799816 CrossRefGoogle Scholar
M. Hajjaj, Propagation dynamique et arrêt de fissure de clivage dans un acier bainitique, Ph.D. thesis of Ecole Centrale Paris 2006
Hajjaj, M., Berdin, C., Bompard, P., Bugat, S., Analyses of cleavage crack arrest experiments: influence of specimen vibration, Eng. Fracture Mech. 75 (2008) 11561170 CrossRefGoogle Scholar
B. Vereecke, Une analyse probabiliste du comportement d’une famille d’aciers pour cuve de REP en cas d’accident grave, Ph.D. thesis of Paris VI University, 2004
V. Le Corre, Etude de la compétition déchirure ductile/rupture fragile : application a la tenue mecanique des tubes en acier C-Mn et de leurs joints soudes, Ph.D. thesis of Ecole Centrale Lille, 2006
E. Merchant, Basic mechanics of the metal cutting process, J. App. Mech., Trans. ASME 66 (1944) A-168
C. Barlier, Usinage des matériaux métalliques, Memotech Plus, Industrialisation & Mécanique, Editions Casteilla, ISBN: 978−2-7135−2703−6 2010, ISSN: 0986−4024