Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:23:08.056Z Has data issue: false hasContentIssue false

DEVELOPMENT OF METARHIZIUM SPP. FOR THE CONTROL OF GRASSHOPPERS AND LOCUSTS

Published online by Cambridge University Press:  31 May 2012

C.J. Lomer
Affiliation:
International Institute of Tropical Agriculture, B.P. 08 0932, Cotonou, Republic of Benin (C. Lomer@cgnet.com)
C. Prior
Affiliation:
International Institute of Biological Control, Silwood Park, Ascot, Berkshire, SL5 7TA, United Kingdom
C. Kooyman
Affiliation:
Department de Formation en Protection des Végétaux, B.P.12 625, Niamey, Niger
Get access

Abstract

Four research programmes are investigating the entomopathogenic fungal genera Metarhizium and Beauveria for locust and grasshopper control in Africa. In the LUBILOSA programme, surveys for pathogen isolates revealed a morphologically distinctive Metarhizium flavoviride Gams and Rozsypal attacking acridoids in West Africa, Madagascar, and elsewhere. Metarhizium anisopliae (Metschnikoff) Sorokin isolates with virulence to acridoids were also obtained, including several from non-orthopteran hosts. Natural epizootics of both genera are rare in acridoid populations, but do occur. A standardized screening method discriminated virulent from non-virulent isolates. The great majority of the most virulent isolates were from the acridoid group of M. flavoviride. A Niger isolate chosen for development from this group had low virulence to honey bees and parasitic Hymenoptera and was not infective to insects in several other orders. Field tests were carried out on formulations of oil mixtures, using ULV application rates of 1–2 L/ha and 2–5 × 1012 conidia per hectare. In preliminary tests, target insects were sprayed successfully in small field arenas and in large cages. Trials in 1993 on variegated grasshopper gave an approx. 90% reduction in field populations after 15 days. Trials on various acridids, predominantly Hieroglyphus daganensis Krauss, in dense grass in northern Benin showed slower mortality, although up to 70% population reduction was achieved. Trials using a vehicle-mounted ULV sprayer (the Ulva-Mast) in open grassland in Niger gave >90% mortality in samples of mixed acridids. In Mali, a Malian isolate of M. flavoviride was shown to be slightly more virulent than the standard Niger isolate; both isolates gave significant population reductions against nymphs of Oedaleus senegalensis Krauss and Kraussella amabile (Krauss) in 1-ha plots. Successful small-scale field trials have also been carried out using the standard M. flavoviride isolate in South Africa against brown locust and in Australia using an Australian isolate against wingless grasshopper. In Mauritania, a trial using the Niger isolate against desert locust nymph bands gave up to 90% mortality in caged samples by day 9 after spraying. The uncaged treated bands were completely destroyed by predators while untreated bands fledged. Oil-based ULV formulations of M. flavoviride are capable of causing high mortality in the field populations of all acridoids against which they have been field tested and show great promise for development as components of IPM strategies for these pests.

Résumé

Quatre programmes de recherche sont actuellement en cours pour étudier les propriétés entomopathogènes des champignons des genres Metarhizium et Beauveria dans la lutte biologique contre les criquets en Afrique. Dans le cadre du programme LUBILOSA, la recherche de pathogènes a révélé une forme distinctive de Metarhizium flavoviride Gams et Rozsypal parasite des acridoïdes d'Afrique de l'Ouest, de Madagascar et d'autres endroits. Des isolats de M. anisopliae (Metschnikoff) Sorokin virulents pour les acridoïdes ont également été obtenus, dont plusieurs provenant d'hôtes qui ne sont pas des orthoptères. Les épizooties causées par ces deux genres sont rares chez les populations naturelles d'acridoïdes, mais elles ont déjà été observées. Une méthode classique de tri a permis de séparer les isolats virulents des isolats non virulents. La grande majorité des isolats les plus virulents appartiennent au groupe de M. flavoviride recueillis sur les acrodoïdes. Un isolat de ce groupe provenant du Niger, choisi pour être développé, a une faible virulence pour les abeilles et les hyménoptères parasites et n'est pas infectieux pour plusieurs autres ordres d'insectes. Des tests en nature ont permis d'essayer plusieurs émulsions de préparations ultra-bas volume (ULV) de 1–2 L/ha et 2–5 × 1012 conidies per hectare. Au cours de tests préliminaires, les insectes cibles ont été vaporisés avec succès dans de petites arènes, en nature et dans de grandes cages. En 1993, des tests sur Zonocerus variegatus (L.) ont résulté en une réduction d'environ 90% des populations naturelles après 15 jours. Des tests sur divers acridiens, surtout Hieroglyphus daganensis Krauss, dans les prairies herbeuses denses du nord du Bénin ont été plus lents à entraîner la mortalité, mais ont réduit la population de près de 70%. Des essais au moyen d'un vaporisateur de volumes ultra-bas (le Ulva-Mast) monté sur un véhicule en prairie ouverte, au Niger, ont entraîné une mortalité supérieure à 90% d'échantillons composés de mélanges d'acridiens. Au Mali, un isolat malien de M. flavoviride s'est avéré légèrement plus virulent que l'isolat standard du Niger; les deux isolats ont occasionné d'importantes réductions des populations de larves d'Oedaleus senegalensis Krauss et de Krausella amabile (Krauss) dans des parcelles de 1 ha. Des tests en nature, à petite échelle, de l'isolat standard de M. flavoviride ont été fructueux en Afrique du Sud contre Locustana pardalina Walker et l'utilisation d'un isolat australien dans les mêmes conditions a permis la réduction des populations de Phaulacridium vittatum (SjÖstedt) en Australie. En Mauritanie, l'essai de l'isolat du Niger contre des groupes de larves du Criquet pèlerin a entraîné la mortalité de près de 90% des larves en cage après 9 jours. Les rassemblements de larves en liberté qui ont été traités ont été entièrement détruits par des prédateurs alors que les larves non traitées ont atteint le stade d'envol. Des préparations ULV à base d'huile de M. flavoviride peuvent entraîner une forte mortalité au sein des populations naturelles de tous les acridiens qui ont servi au cours des expériences et il s'agit donc là d'une méthode très prometteuse comme stratégie de lutte intégrée contre ces insectes. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Current address: The Royal Horticultural Society's Garden, Wisley, Woking, Surrey GU23 6QB, United Kingdom.

2

Current address: CAB International Regional office, P.O. Box 76520, Nairobi, Kenya.

References

Baker, G.L., Milner, R.J., Lutton, G.G. and Watson, D.. 1994. Preliminary field trial on the control of Phaulacridium vittatum (Sjöstedt) (Orthoptera: Acrididae) populations with Metarhizium flavoviride Gams and Rozsypal (Deuteromycetina: Hyphomycetes). Journal of the Australian Entomological Society 33. 190192Google Scholar
Balfour-Browne, F.L. 1960. The green muscardine disease of insects, with special reference to an epidemic in a swarm of locusts in Eritrea. Proceedings of the Royal Entomological Society of London (A) 35: 656674.Google Scholar
Ball, B.V., Pye, B.J., Carreck, N.L., Moore, D. and Bateman, R.P.. 1994. Laboratory testing of a mycopesticide on non-target organisms: The effects of an oil formulation of Metarhizium flavoviride applied to Apis mellifera. Biocontrol Science and Technology 4: 289296.Google Scholar
Bateman, R.P. 1994. Performance of myco-insecticides: Importance of formulation and controlled droplet application. Paper presented at SCI/BCPC meeting “Comparing glasshouse and field pesticide performance II” April 1994, University of Kent, Canterbury, UK.Google Scholar
Bateman, R.P. 1997. Methods of application of microbial pesticide formulations for the control of grasshoppers and locusts. pp. 69–81 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Bateman, R.P., Batt, D., Carey, M., Douro-Kpindou, O.-K., Godonou, I., Jenkins, N.E., Kooyman, C., Lomer, C., Moore, D., Ouambama, Z., Paraïso, A., Prior, C. and Shah, P.A.. 1993. Progress with the development of Metarhizium flavoviride for control of locusts and grasshoppers. Paper presented at IOBC/WPRS conference, Zurich, Sept. 1993.Google Scholar
Bateman, R.P., Carey, M., Batt, D., Prior, C., Abraham, Y., Moore, D., Jenkins, N. and Fenlon, Y.. 1996. Screening for virulent isolates of entomopathogenic fungi against the desert locust, Schistocerca gregaria (Forskål). Biocontrol Science and Technology 6: 549560.Google Scholar
Bateman, R.P., Carey, M., Moore, D. and Prior, C.. 1992. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Annals of Applied Biology 122: 145152.Google Scholar
Bateman, R.P., Godonou, I., Kpindu, D., Lomer, C.J. and Paraïso, A.. 1992. Development of a novel “field bioassay” technique for assessing mycopesticide U.L.V. formulations, pp. 255–262 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Bateman, R.P., Price, R.F., Müller, E.J. and Brown, H.D.. 1994. Controlling brown locust hopper bands in South Africa witha a myco-insecticide spray. Paper presented at Brighton Crop Protection Conference, UK, Nov. 1994.Google Scholar
Bidochka, M.J., McDonald, M.A., St. Leger, R.J. and Roberts, D.W.. 1994. Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA. Current Genetics 25: 107113.Google Scholar
Brader, L. 1988. Control of locusts and grasshoppers, pp. 283288in Brighton Crop Protection Conference: Pests and Diseases 1988. BCPC, Brighton, UK.Google Scholar
Bridge, P.D., Williams, M.A.J., Prior, C. and Paterson, R.R.M.. 1993. Morphological, biochemical and molecular characteristics of Metarhizium anisopliae and M. flavoviride. Journal of General Microbiology 139: 11631169.Google Scholar
Bridge, P.D., Prior, C., Sagbohan, J., Lomer, C.J., Carey, M. and Buddie, A.. 1997. Molecular characterisation of isolates of Metarhizium from locusts and grasshoppers. Biodiversity and Conservation 6: 177189.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. and Soper, R.S.. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers, pp. 329–353 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Chapman, R.F. and Page, W.W.. 1979. Factors affecting the mortality of the grasshopper Zonocerus variegatus, in southern Nigeria. Journal of Animal Ecology 48: 271288.Google Scholar
Cunningham, C.L. 1992. APHIS; grasshopper integrated pest management in the United States—a co-operative project with emphasis on biological control, pp. 21–25 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Curran, J.F., Driver, F., Ballard, J.W.O. and Milner, R.J.. 1994. Phylogeny of Metarhizium analysis of ribosomal DNA sequence data. Mycological Research 98: 547552.Google Scholar
Douro-Kpindou, O.-K., Godonou, I., Houssou, A., Lomer, C.J. and Shah, P.A.. 1995. Control of Zonocerus variegatus with ULV formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 5: 131139.Google Scholar
Douro-Kpindou, O.-K., Shah, P.A., Langewald, J., Lomer, C.J., van der Pau, H., Sidibé, A. and Daffe, CO.. 1997. Essais sur l'tilisation d'un biopesticide (Metarhizium flavoviride) pour le controle des sauteriaux au Mali de 1992 à 1994. Journal of Applied Entomology. In press.Google Scholar
Fegan, M., Manners, J.M., MacLean, D.J., Irwin, J.A.G., Samuels, K.D.Z., Holdom, D.G. and Li, D.P.. 1993. Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae. Journal of General Microbiology 139: 20752081.Google Scholar
Geddes, A.M.W. 1990. The Relative Importance of Crop Pests in Sub-Saharan Africa. NRI Bulletin 36: 68 pp.Google Scholar
Goettel, M.S. and Jaronski, S.T.. Safety and registration of microbial control agents of grasshoppers and locusts. pp. 83–99 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Goettel, M.S. and Roberts, D.W.. 1992. Mass production, formulation and field application of entomopathogenic fungi, pp. 230–238 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Hooper, G.H.S., Milner, R.J., Spurgin, P.S. and Prior, C.. 1995. Initial field assessment of Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes) for control of Chortoicetes terminifera (Walker) (Orthoptera: Acrididae). Journal of the Australian Entomological Society 34: 8384.Google Scholar
Humber, R.A. 1992. Collection of Entomopathogenic Fungal Cultures: Catalog of Strains, 1992. U.S. Department of Agriculture, Agricultural Research Service ARS–110: 177 pp.Google Scholar
Jaronski, S.T. and Goettel, M.S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts. pp. 225–237 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Jenkins, N.E. and Goettel, M.S.. 1997. Methods for mass-production of microbial control agents of grasshoppers and locusts, pp. 37–48 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. and Goettel, M.S.. 1993. Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.Google Scholar
Kleespies, R.G. and Zimmerman, G.. 1992. Production of blastospores by three strains of Metarhizium anisopliae (Metch.) Sorokin in submerged culture. Biocontrol Science and Technology 2: 127135.Google Scholar
Kooyman, C. and Godonou, I.. 1997. Infection of Schistocerca gregaria (Orthoptera: Acrididae) hoppers by Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) conidia in an oil formulation applied under desert conditions. Bulletin of Entomological Research 87: 105107.Google Scholar
Kooyman, C., Bateman, R.P., Langewald, J., Lomer, C.J., Ouambama, Z. and Thomas, M.B.. 1997. Operational-scale application of entomopathogenic fungi for control of sahelian grasshoppers. Proceedings of the Royal Society. B. 264: 541546.Google Scholar
Kooyman, C. and Shah, P.. 1992. Exploration for locust and grasshopper pathogens, pp. 208–213 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Langewald, J., Kooyman, C., Douro-Kpindou, O.-K., Lomer, C., Dahmoud, A.O. and Mohamed, H.O.. 1997. Field treatment of Desert Locust (Schistocerca gregaria Forskål) hoppers in the field in Mauritania with an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Science and Technology 7. In press.Google Scholar
Langewald, J., Thomas, M.B., Douro-Kpindou, O.-K. and Lomer, C. J.. 1997. Use of Metarhizium flavoviride for control of Zonocerus variegatus: A model, linking dispersal and secondary infection from the spray residue with mortality in caged field samples. Entomological Experimentalis et Applicata 82: 18.Google Scholar
Lobo-Lima, M.L., Brito, J.M. and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde islands. pp. 287–295 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Bateman, R.P., Godonou, I., Kpindou, D., Shah, P.A., Paraïso, A. and Prior, C.. 1993. Field infection of Zonocerus variegatus following application of an oil based formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 3: 337346.Google Scholar
Lomer, C.J., Thomas, M.B., Douro-Kpindou, O.-K., Gbongboui, C., Godonou, I., Langewald, J. and Shah, P.A.. 1997. Control of grasshoppers, particularly Hieroglyphus daganensis, in northern Benin using Metarhizium flavoviride. pp. 301–311 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Magalhães, B.P., Faria, M., Tigano, M.S. and Sobral, B.W.S.. Characterization and virulence of a Brazilian isolate of Metarhizium flavoviride Gams & Rozsypal (Hyphomycetes). pp. 313–321 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Mendonça, A.F. 1992. Mass production, application and formulation of Metarhizium anisopliae for control of sugarcane froghopper, Mahanarva posticata in Brazil. pp. 239–244 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Milner, R.J.Metarhizium flavoviride (FI985) as a promising mycoinsecticide for Australian acridids. pp. 287–300 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Milner, R.J., Driver, F., Curran, J., Glare, T.R., Prior, C., Bridge, P.D. and Zimmerman, G.. 1994. Recent problems with the taxonomy within the genus Metarhizium, and a possible solution. pp. 109110in Sixth International Colloquium on Invertebrate Pathology and Microbial Control, Montpellier, France, 28 August – 2 September 1994. Abstracts.Google Scholar
Milner, R.J., Hartley, T.R., Lutton, G.G. and Prior, C.. 1994. Control of Phaulacridium vittatum (Sjostedt) (Orthoptera: Acrididae) in field cages using an oil-based spray of Metarhizium flavoviride Gams and Rozsypal (Deuteromycotina: Hyphomycetes). Journal of the Australian Entomological Society 33: 165167.Google Scholar
Milner, R.J. and Prior, C.. 1994. Susceptibility of Australian plague locust, Chortoicetes terminifera, and the wingless grasshopper, Phaulacridium vittatum, to the fungi, Metarhizium spp. Biological Control 4: 132137.Google Scholar
Moore, D. and Caudwell, R.W.. 1997. Formulation of entomopathogens for the control of grasshoppers and locusts. pp. 49–67 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Moore, D., Douro-Kpindou, O.-K., Jenkins, N.E. and Lomer, C.J.. 1996. Effects of moisture content and temperature on storage of Metarhizium flavoviride conidia. Biocontrol Science and Technology. 6: 5161.Google Scholar
Nyambo, B.T. 1991. The pest status of Zonocerus elegans (Thunberg) (Orthoptera: Acridoidea) in Kilosa District in Tanzania with some suggestions on control. Insect Science and its Application 12: 231236.Google Scholar
Ouedraogo, R.M. 1993. Investigations on the Use of the Fungus Beauveria bassiana (Hyphomycetes: Moniliales) for Control of the Senegalese Grasshopper Oedaleus senegalensis (Orthoptera: Acrididae). MPM thesis, Simon Fraser University, Burnaby, BC. 67pp.Google Scholar
Paraïso, A., Lomer, C.J., Godonou, I. and Kpindou, D.. 1992. Preliminary studies on the ecology of Zonocerus variegatus in the Republic of Benin. pp. 133–141 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Popov, G.B. 1988. Sahelian Grasshoppers. Overseas Development Natural Resources Institute Bulletin 5: 87 pp.Google Scholar
Price, R.E., Bateman, R.P., Butler, E.T. and Muller, E.J.. 1997. Aerial spray trials against brown locust Locustana pardalina (Walker) nymphs in South Africa using oil-based formulations of Metarhizium flavoviridae. Crop Protection. 16: 345351.Google Scholar
Prior, C. 1990. The biological basis for regulating the release of micro-organisms, with particular reference to the use of fungi for pest control. pp. 231238in The Exploitation of Micro-organisms in Applied Biology. Aspects of Applied Biology 24.Google Scholar
Prior, C. 1992. Discovery and characterisation of fungal pathogens for locust and grasshopper control. pp. 159–180 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Prior, C. and Greathead, D.J.. 1989. Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin 37: 3748.Google Scholar
Prior, C., Lomer, C.J., Herren, H., Paraïso, A., Kooyman, C. and Smit, J.J.. 1992. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers. pp. 8–20 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Prior, C. and Streett, D.A.. 1997. Strategies for the use of entomopathogens in the control of the desert locust and other acridoid pests. pp. 5–25 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Rakotonirainy, M.S., Cariou, M.L., Brygoo, Y. and Riba, G.. 1994. Phylogenetic relationships within the genus Metarhizium based on 28s rRNA sequences and isozyme comparison. Mycological Research 98: 225230.Google Scholar
Riba, G., Bouvier-Fourcade, I. and Caudal, A.. 1986. Isoenzymes polymorphism in Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) entomogenous fungi. Mycopathologia 96: 161169.Google Scholar
Riba, G., Rakotonirainy, M. and Brygoo, Y.. 1990. Phylogenetic relationships in the genus Metarhizium. pp. 125131in Cooper, D.J., Drummond, J., and Pinnock, D.E. (Eds.), Proceedings and Abstracts of the Fifth International Colloquium on Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20–24 August 1990.Google Scholar
Sawyer, A.J., Ramos, M.E., Poprawski, T.J., Soper, R.S. and Carruthers, R.I.. Seasonal patterns of cadaver persistence and sporulation by the fungal pathogen Entomophaga grylli (Fresenius) Batko (Entomophthorales: Entomophthoraceae) infecting Camnula pellucida (Scudder) (Orthoptera: Acrididae). pp. 355–374 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Shah, P.A. 1993. Observations on a species of Sorosporella (Deuteromycotina: Hyphomycetes) infecting Kraussaria angulifera (Orthoptera: Acrididae) in the Republic of Mali. Journal of Invertebrate Pathology 62: 318.Google Scholar
Shah, P.A., Godonou, I., Gbongboui, C. and Lomer, C.J.. 1994. Natural levels of fungal infections in grasshoppers in Northern Benin. Biocontrol Science and Technology 4: 331342.Google Scholar
Shah, P.A., Kooyman, C. and Paraïso, A.. 1997. Surveys for fungal pathogens of locusts and grasshoppers in Africa and the Near East. pp. 27–35 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Showler, A.T. and Potter, C.S.. 1991. Synopsis of the 1986–1989 desert locust (Orthoptera: Acrididae) plague and the concept of strategic control. American Entomologist Summer 1991: 106110.Google Scholar
St. Leger, R.J., May, B., Allee, L.L., Frank, D.C., Staples, R.C. and Roberts, D.W.. 1992. Genetic differences in allozymes and in formation of infection structures among isolates of the entomopathogenic fungus Metarhizium anisopliae. Journal of Invertebrate Pathology 60: 89101.Google Scholar
Thomas, M.B., Wood, S.N., Langewald, J. and Lomer, C.J.. 1997. Persistence of biopesticides and consequences for biological control of grasshoppers and locusts. Ecological Applications. 49: 4755.Google Scholar
Van Huis, A. 1992. New developments in desert locust management and control. Proceedings of Experimental and Applied Entomology N.E.V. Amsterdam 3: 218.Google Scholar
Veen, K.H. 1967. A technique for monospore cultures and the determination of nucleus numbers in Metarrhizium anisopliae. Journal of Invertebrate Pathology 9: 276278.Google Scholar
Veen, K.H. 1968. Recherches sur la maladie due à Metarhizium anisopliae chez le criquet pèlerin. Medelingen van der Landbouwhogeschool Wageningen 68–5: 77 pp.Google Scholar
Wilps, H., Nasseh, O. and Krall, S.. 1992. The effect of various neem products on the survival and flight activity of adult Schistocerca gregaria. pp. 337–346 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International. UK. 394 pp.Google Scholar
Wilson, L.T. and Room, P.M.. 1983. Clumping patterns of fruit and arthropods in cotton with implications for binomial sampling. Environmental Entomology 12: 5054.Google Scholar
Yip, H.Y., Rath, A.C. and Koen, T.B.. 1992. Characterisation of Metarhizium anisopliae isolates from Tasmanian pasture soils and their pathogenicity to redheaded cockchafer (Coleoptera: Scarabaeidae: Adoryphorus couloni). Mycological Research 96: 9296.Google Scholar
Zelazny, B. 1992. CEC; biological control of locusts with entomopathogens. pp. 26–29 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar