Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T13:08:45.163Z Has data issue: false hasContentIssue false

ENTOMOPOXVIRUSES OF GRASSHOPPERS AND LOCUSTS: BIOLOGY AND BIOLOGICAL CONTROL POTENTIAL

Published online by Cambridge University Press:  31 May 2012

D.A. Streett
Affiliation:
USDA/ARS, Rangeland Insect Laboratory, Montana State University, Bozeman, Montana, USA 59717-0366
S.A. Woods
Affiliation:
Department of Applied Ecology and Environmental Sciences, University of Maine, Orono, Maine, USA 04469
M.A. Erlandson
Affiliation:
Agriculture and Agri-Food Canada Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
Get access

Abstract

Entomopoxviruses (EPVs) are insect poxviruses that are often found infecting grasshoppers and locusts. Nearly 15 grasshopper and locust EPVs have been reported in the literature. This review describes our current knowledge of the biology of grasshopper and locust EPVs including virus ultrastructure, host range, production in cell culture, pathology, process of infection, epizootiology, and field evaluations of the viruses to assess their potential as biological control agents. The most extensively studied has been the Melanoplus sanguinipes EPV (MsEPV). Trypsin-like protease activity has been identified in association with MsEPV occlusion bodies but its importance in the infection process is not known. Mortality from MsEPV has been found to occur in two distinct time frames over 6 weeks or longer. MsEPV is also the only grasshopper EPV that has been grown in vitro and been shown to produce virus that is both infectious and virulent to M. sanguinipes. Horizontal transmission of grasshopper EPVs is apparently by consumption of infected cadavers. Field evaluations of MsEPV at an application rate of 1 × 1010 occlusion bodies per hectare resulted in a 23% prevalence after 13 days despite a considerable amount of dispersal of grasshoppers between plots. Epizootiological studies of EPVs will continue to be an area requiring additional research. Virus production and a limited host range are the two most critical issues affecting the development of EPVs as microbial control agents.

Résumé

Les entomopoxvirus (EPV) sont des virus des insectes souvent rencontrés chez les criquets. Près de 15 EPV de criquets sont mentionnés dans la littérature. On trouvera ici une révision de l'état de nos connaissances sur la biologie des EPV des criquets, ultrastructure, éventail des hôtes, production en culture, pathologie, processus d'infection, épizootiologie et évaluation en nature, opération destinée à évaluer le potentiel de ces organismes comme agents de lutte biologique. Le virus le plus étudié est l'EPV du Criquet voyageur, Melanoplus sanguinipes (MsEPV). Une protéase de type trypsine a été trouvée en association avec les corps d'inclusion du poxvirus, mais son importance dans le processus infectieux est encore inconnue. La mortalité attribuable au MsEPV se produit selon deux périodes temporelles distinctes au cours d'une durée de 6 semaines ou plus. Le MsEPV est également le seul EPV de criquet a avoir été produit in vitro et le seul à avoir été reconnu capable de produire un virus à la fois infectieux et virulent pour M. sanguinipes. La transmission horizontale des EPV de criquets se fait apparemment par consommation de cadavres infectés. L'évaluation du MsEPV en nature après application de 1 × 1010 corps d'inclusion par hectare a démontré que 23% des criquets étaient infectés après 13 jours, malgré la dispersion importante des criquets d'une parcelle de terrain à une autre. L'étude des épizooties causées par les EPV reste un domaine de recherche très ouvert. La production des virus et la gamme limitée d'hôtes restent deux problèmes critiques dans l'élaboration d'EPV qui pourront servir d'agents de lutte microbienne. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: USDA/ARS, Southern Insect Management Unit, P.O. Box 346, Stoneville, Mississippi. 38776 U.S.A.

References

Erlandson, M.A. 1991. Protease activity associated with occlusion body preparations of an entomopoxvirus from Melanoplus sanguinipes. Journal of Invertebrate Pathology 57: 255263.Google Scholar
Erlandson, M.A. and Streett, D.A.. 1997. Entomopoxviruses associated with grasshoppers and locusts: Biochemical characterization, pp. 131–146 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Esposito, J.J. 1991. Poxviridae. pp. 91–102 in Francki, R.I.B., Fraquet, C.M., Knudson, D.L., and Brown, F. (Eds.), Classification and Nomenclature of Viruses. Archives of Virology, Supplementum 2: 450 pp.Google Scholar
Fisher, J.R., Kemp, W.P. and Berry, J.S.. 1995. Melanoplus sanguinipes Phenology North-South Across the Western United States. USDA, APHIS, Technical Bulletin 1809.Google Scholar
Goerzen, D.W., Erlandson, M.A. and Moore, K.C.. 1990. Effect of two insect viruses and two entomopathogenic fungi on larval and pupal development of the alfalfa leafcutting bee, Megachile rotundata (Fab.) (Hymenoptera: Megachilidae). The Canadian Entomologist 120: 10391040.Google Scholar
Goodwin, R.H. and Filshie, B.K.. 1975. Morphology and development of entomopoxviruses from two Australian scarab beetle larvae (Coleoptera: Scarabaeidae). Journal of Invertebrate Pathology 25: 3546.Google Scholar
Goodwin, R.H., Milner, R.J. and Beaton, C.D.. 1991. Entomopoxvirinae. pp. 259–285 in Adams, J.R., and Bonami, J.R. (Eds.), Atlas of Invertebrate Viruses. CRC Press, Boca Raton, FL. 684 pp.Google Scholar
Granados, R.R. 1973. Insect poxviruses: Pathology, morphology, and development, pp. 73–94 in Roberts, D.W., and Yendol, W.G. (Eds.), Some Recent Advances in Insect Pathology. Miscellaneous Publications of the Entomological Society of America. 9: 119 pp.Google Scholar
Granados, R.R. 1981. Entomopoxvirus infections in insects, pp. 101–126 in Davidson, E.W. (Ed.), Pathogenesis of Invertebrate Microbial Diseases. Allanheld, Osmun and Co., Publishers, Inc., Totowa, NJ. 562 pp.Google Scholar
Henry, J.E. 1985. Effect of grasshopper species, cage density, light intensity, and method of inoculation on mass production of Nosema locustae (Microsporida: Nosematidae). Journal of Economic Entomology 78: 12451250.Google Scholar
Henry, J.E. and Jutila, J.W.. 1966. The isolation of a polyhedrosis virus from a grasshopper. Journal of Invertebrate Pathology 8: 417418.Google Scholar
Henry, J.E., Nelson, B.P. and Jutila, J.W.. 1969. Pathology and development of the grasshopper inclusion body virus in Melanoplus sanguinipes. Journal of Virology 3: 605610.Google Scholar
Henry, J.E., Wilson, M.C., Oma, E.A. and Fowler, J.L.. 1985. Pathogenic micro-organisms isolated from West African grasshoppers (Orthoptera: Acrididae). Tropical Pest Management 31: 192195.Google Scholar
Hinks, C.F., Olfert, O.O. and Westcott, N.D.. 1987. Screening cereal cultivars for resistance to early-instar grasshoppers. Journal of Agricultural Entomology 4: 315319.Google Scholar
Jaeger, B. and Langridge, W.H.R.. 1984. Infection of Locusta migratoria with entomopoxviruses from Arphia conspersa and Melanoplus sanguinipes grasshoppers. Journal of Invertebrate Pathology 43: 374382.Google Scholar
Johnson, D.L. and Pavlikova, E.. 1986. Reduction in consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.Google Scholar
Kurtti, T.J., Munderloh, U.G., Ross, S.E., Ahlstrand, G.G. and Streett, D.A.. 1990. Cell culture systems for production of host dependent grasshopper pathogens, pp. 246–251 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.Google Scholar
Lange, C.E. and Streett, D.A.. 1993. Susceptibility of Argentine melanoplines (Orthoptera: Acrididae) to entomopoxviruses (Entomopoxvirinae) from North American and African grasshoppers. The Canadian Entomologist 125: 11271129.Google Scholar
Langridge, W.H.R., Oma, E.A. and Henry, J.E.. 1983. Characterization of the DNA and structural proteins of entomopoxviruses from Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis (Orthoptera). Journal of Invertebrate Pathology 42: 327333.Google Scholar
McAnelly, M.L. and Rankin, M.A.. 1986. Migration in the grasshopper, Melanoplus sanguinipes (Fab). II. Interactions between flight and reproduction. Biological Bulletin (Woods Hole, Massachusetts) 170: 378392.Google Scholar
McGuire, M.R., Streett, D.A. and Shasha, B.S.. 1991. Evaluation of starch-encapsulation for formulation of grasshopper (Orthoptera: Acrididae) entomopoxviruses. Journal of Economic Entomology 84: 16521656.Google Scholar
Miranpuri, G.S., Erlandson, M.A., Gillespie, J.P. and Khachatourians, G.G.. 1992. Changes in hemolymph of the migratory grasshopper, Melanoplus sanguinipes, infected with an entomopoxvirus. Journal of Invertebrate Pathology 60: 274282.Google Scholar
Munderloh, U.G. and Kurtti, T.J.. 1989. Formulation of medium for tick cell culture. Experimental Applied Acarology 7: 219229.Google Scholar
Nakashima, T., Tokuyasu, K. and Funatsu, M.. 1965. Studies on proteolytic enzyme of the cricket, Gryllulus taiwanemma. Agricultural and Biological Chemistry 29: 307314.Google Scholar
Olfert, O.O. and Erlandson, M.A.. 1991. Wheat foliage consumption by grasshoppers (Orthoptera: Acrididae) infected with Melanoplus sanguinipes entomopoxvirus. Environmental Entomology 20: 17201724.Google Scholar
Oma, E.A. and Henry, J.E.. 1986. Host relationships of entomopoxviruses isolated from grasshoppers, pp. 48–49 in Grasshopper Symposium Proceedings. ND Extension Service. 94 pp.Google Scholar
Oma, E.A. and Streett, D.A.. 1993. Production of a grasshopper entomopoxvirus (Entomopoxvirinae) in Melanoplus sanguinipes (F.) (Orthoptera: Acrididae). The Canadian Entomologist 125: 11311133.Google Scholar
O'Neill, K.M., Streett, D. and O'Neill, R.P.. 1994. Scavenging behavior of grasshoppers (Orthoptera: Acrididae): Feeding and thermal responses to newly available resources. Environmental Entomology 23: 12601268.Google Scholar
O'Neill, K.M., Woods, S.A., Streett, D.A. and O'Neill, R.P.. 1993. Aggressive interactions and feeding success of scavenging rangeland grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 751758.Google Scholar
O'Reilly, D.R. and Miller, L.K.. 1990. Regulation of expression of a baculovirus ecdysteroid UDP glucosyltransferase gene. Journal of Virology 64: 13211328.Google Scholar
Parker, J.R., Newton, R.C. and Shotwell, R.L.. 1955. Observations on mass flights and other activities of the migratory grasshopper. USDA Technical Bulletin 1109: 46 pp.Google Scholar
Pfadt, R.E. 1982. Density and diversity of grasshoppers (Orthoptera:Acrididae) in an outbreak on Arizona rangeland. Environmental Entomology 11: 690694.Google Scholar
Purrini, K., Kohring, G.W. and Seguni, Z.. 1988. Studies on a new disease in a natural population of migratory locusts, Locusta migratoria, caused by an entomopoxvirus. Journal of Invertebrate Pathology 51: 284286.Google Scholar
Purrini, K. and Rohde, M.. 1988. Light and electron microscope studies on two new diseases in natural populations of the desert locust, Schistocerca gregaria, and the grassland locust, Chortipes sp., caused by two entomopoxviruses. Journal of Invertebrate Pathology 51: 281283.Google Scholar
Sakal, E., Applebaum, S.W. and Birk, Y.. 1989. Purification and characterization of trypsins from the digestive tract of Locusta migratoria. International Journal of Peptide and Protein Research 34: 498505.Google Scholar
Shapiro, M., Stock, R.D. and Ignoffo, C.M.. 1969. Hemocyte changes in larvae of the bollworm, Heliothis zea, infected with a nuclear polyhedrosis virus. Journal of Invertebrate Pathology 14: 2830.Google Scholar
Soderhall, K. and Smith, V.J.. 1986. Prophenoloxidase-activating cascade as a recognition and defense system in arthropods, pp. 251–285 in Gupta, A.P. (Ed.), Hemocytic and Humoral Immunity in Arthropods. John Wiley, New York, NY. 508 pp.Google Scholar
Streett, D.A., Oma, E.A. and Henry, J.E.. 1990. Cross infection of three grasshopper species with the Melanoplus sanguinipes entomopoxvirus. Journal of Invertebrate Pathology 56: 419421.Google Scholar
Streett, D.A. and Woods, S.A.. 1990. Grasshopper pathogen field evaluation: Virus, pp. 210–217 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.Google Scholar
Vandenberg, J.D., Streett, D.A. and Herbert, E.W. Jr., 1990. Safety of grasshopper entomopoxviruses for caged adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 83: 755759.Google Scholar
Wang, L.Y. 1994. Surveys of entomopoxviruses of rangeland grasshoppers in China. Scientia Agricultura Sinica 27: 6063.Google Scholar
Woods, S.A., Streett, D.A. and Henry, J.E.. 1992. Temporal patterns of mortality from an entomopoxvirus and strategies for control of the migratory grasshopper Melanoplus sanguinipes (F.). Journal of Invertebrate Pathology 60: 3339.Google Scholar