Skip to main content Accessibility help
×
×
Home

INSECTS IN THERMAL SPRINGS

  • Gordon Pritchard (a1)
Abstract

Thermal springs are characterized by year-round high temperatures and a total-dissolved-solids concentration that is generally higher than that of surface waters. Insects appear to encounter few constraints from the water chemistry of most thermal springs, but considerable constraint from the high water temperature. Indeed, because no insect lives above 50 °C and very few above 40 °C, few thermal springs offer favorable conditions for insects in the actual boil itself. Thermal spring insects live in the stream at some distance from the source, and they may be defined as living in habitats having temperature regimens that are influenced by geothermy in the sense that they are warmer than they otherwise would be. An annual mean water temperature that is 5 °C above the annual mean air temperature of the region can be used to define the downstream limit of geothermal influence.Thermal springs around the world have similar insect faunas; only four orders (Diptera, Coleoptera, Hemiptera, Odonata) are commonly represented, and each of these only by a handful of genera. Furthermore, the fauna of any one thermal spring is characterized by very few species, and the higher the temperature the lower the species richness. Both temperature and water chemistry may exclude certain species, and even whole orders, from thermal springs, these factors acting either directly, alone or in concert, or indirectly through competitive interactions. Even moderately warmed systems can significantly affect insect growth rates, and seasonal regulation of adult emergence through diapause is a common strategy of temperate-zone thermal spring insects.Thermal springs present many advantages to the ecologist, such as long-term habitat constancy, temperature stability, and taxonomic simplicity. They provide field laboratories for the study of temperature-related phenomena as well as the opportunity to explore a range of questions in biogeography and evolutionary biology. The challenge is to form the questions and select the systems critically.

Les sources thermales sont caractérisées par des températures élevées à longeur de l'année et par une concentration de solides dissous généralement plus élevée que celle des eaux de surface. Les insectes semblent rencontrer peu de contraintes liées à la chimie de l'eau de la plupart de sources thermales, mais rencontrent par contre une contrainte considérable due à la température élevée de l'eau. Certes, parce qu'aucun insecte ne vit à une température au-dessus de 50 °C et très peu d'entre eux à une température au-dessus de 40 °C, peu de sources thermales offrent des conditions favorables aux insectes dans les endroits immédiats où ces eaux font surface. Les insectes des sources thermales vivent dans le cours d'eau à quelque distance de l'origine de la source et peuvent être définis comme vivant dans les habitats ayant des régimes de température influencés par géothermie, dans le sens qu'ils sont plus chauds qu'ils auraient été autrement. Une température moyenne annuelle de l'eau, qui se trouve 5 °C au-dessus de la température moyenne annuelle de l'air de la région, pourrait servir à définir la limite d'influence géothermique en aval.

Les sources thermales du monde entier ont des faunes entomologiques semblables : seulement quatre ordres (Diptera, Coleoptera, Hemiptera, Odonata) sont normalement présents et chacun d'eux présente seulement quelques genres. De plus, la faune d'une source thermale est caractérisée par très peu d'espèces, et plus la température est élevée plus la diversité est faible. La température et la chimie de l'eau peuvent exclure certaines espèces, et même des ordres en entiers, des sources thermales, ces deux facteurs agissant soit directement, seuls ou en concert, ou indirectement à travers des interactions compétitives. Même des systèmes qui sont modérément chauds peuvent influencer significativement le taux de croissance des insectes et la régulation saisonnière de l'émergence des insectes adultes par la diapause est une stratégie commune chez les insectes des sources thermales des zones tempérées.

Les sources thermales présentent plusieurs avantages à l'écologiste, à savoir : constance à long terme de l'habitat; stabilité de la température; et simplicité taxinomique. Elles fournissent des laboratoires de terrain pour l'étude des phénomènes reliés à la température en plus de donner l'occasion de rechercher une foule de questions reliées à la biogéographie et à la biologie évolutionniste. Le défi est de formuler les questions et de sélectionner soigneusement les systèmes.

Copyright
References
Hide All
Barnby, M.A. 1987. Osmotic and ionic regulation of two brine fly species (Diptera: Ephydridae) from a saline hot spring. Physiol. Zool. 60: 327338.
Barnby, M.A., and Resh, V.H.. 1988. Factors affecting the distribution of an endemic and a widespread species of brine fly (Diptera: Ephydridae) in a northern California thermal saline spring. Ann. ent. Soc. Am. 81: 437446.
Bradley, T.J. 1987. Physiology of osmoregulation in mosquitoes. A. Rev. Ent. 32: 439462.
Bradshaw, A.D., and Hardwick, K.. 1989. Evolution and stress — genotypic and phenotypic components. Biol. J. Linn. Soc. 37: 137155.
Brittain, J.E. 1982. Biology of mayflies. A. Rev. Ent. 27: 119147.
Brock, M.L., Weigert, R.G., and Brock, T.D.. 1969. Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the microorganisms of hot springs. Ecology 50: 192200.
Brock, T.D. 1967. Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48: 566571.
Brock, T.D. 1970. High temperature systems. A. Rev. Ecol. Syst. 1: 191220.
Brock, T.D. 1975. Predicting the ecological consequences of thermal pollution from observations in geothermal habitats, pp. 599622 in Environmental Effects of Cooling Systems at Nuclear Power Plants. Proceedings Series, International Atomic Energy Agency, Vienna.
Brock, T.D., and Brock, M.L.. 1966. Temperature optima for algal development in Yellowstone and Iceland hot springs. Nature, Lond. 209: 733734.
Brock, T.D., and Brock, M.L.. 1968. Life in a hot water basin. Nat. Hist. 77: 4754.
Brock, T.D., and Brock, M.L.. 1969. Effect of light intensity on photosynthesis by thermal algae adapted to natural and reduced sunlight. Limnol. Oceanogr. 14: 334341.
Brues, C.T. 1924. Observations on animal life in the thermal waters of Yellowstone Park, with a consideration of the thermal environment. Proc. Am. Acad. Arts Sci. 59: 371437.
Brues, C.T. 1927. Animal life in hot springs. Q. Rev. Biol. 2: 181203.
Brues, C.T. 1928. Studies on the fauna of hot springs in the western United States and the biology of thermophilous animals. Proc. Am. Acad. Arts Sci. 63: 139228.
Brues, C.T. 1932. Further studies on the fauna of North American hot springs. Proc. Am. Acad. Arts Sci. 67: 186303.
Brundin, L. 1967. Insects and the problem of austral disjunctive distribution. A. Rev. Ent. 12: 149168.
Colburn, E.A. 1983. Effect of elevated temperature on osmotic and ionic regulation in a salt-tolerant caddisfly from Death Valley, California. J. Insect Physiol. 29: 363369.
Colburn, E.A. 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215226.
Collins, N.C. 1975. Population biology of a brine fly (Diptera: Ephydridae) in the presence of abundant food. Ecology 56: 11391148.
Collins, N.C. 1977. Mechanisms determining the relative abundance of brine flies (Diptera: Ephydridae) in Yellowstone thermal spring effluents. Can. Ent. 109: 415422.
Collins, N.C., Mitchell, R., and Wiegert, R.G.. 1976. Functional analysis of a thermal spring ecosystem with an evaluation of the role of consumers. Ecology 57: 12211232.
Conrad, K.F., and Pritchard, G.. 1988. The reproductive behavior of Argia vivida Hagen: An example of a female-control mating system (Zygoptera: Coenagrionidae). Odonatologica 17: 179185.
Conrad, K.F., and Pritchard, G.. 1989. Female dimorphism and physiological colour change in the damselfly Argia vivida Hagen (Odonata: Coenagrionidae). Can. J. Zool. 67: 298304.
Conrad, K.F., and Pritchard, G.. 1990. Pre-oviposition mate-guarding and mating behaviour of the damselfly Argia vivida (Odonata: Coenagrionidae). Ecol. Ent. 15: 363370.
Corbet, P.S. 1962. A Biology of Dragonflies. Witherby, London.
Corbet, P.S. 1980. Biology of Odonata. A. Rev. Ent. 25: 189217.
Dowries, J.A., and Kavanaugh, D.H.. 1988. Symposium, origins of the North American insect fauna: Introduction and commentary, pp. 1–11 in Downes, J. A., and Kavanaugh, D.H. (Eds.), Origins of the North American Insect Fauna. Mem. ent. Soc. Can. 144. 168 pp.
Dunson, W.A. 1980. Adaptations of nymphs of a marine dragonfly, Erythrodiplax berenice, to wide variations in salinity. Physiol. Zool. 53: 445452.
Eriksen, C.H. 1984. The physiological ecology of larval Lestes disjunctus Selys (Zygoptera: Odonata). Freshwater Invert. Biol. 3: 105117.
Eriksen, C.H. 1986. Respiratory roles of caudal lamellae (gills) in a lestid damselfly (Odonata: Zygoptera). J. N. Am. benthol. Soc. 5: 1627.
Ernst, M.R., Beitinger, T.L., and Stewart, K.W.. 1984. Critical thermal maxima of nymphs of three Plecoptera species from an Ozark foothill stream. Freshwater Invert. Biol. 3: 8085.
Forbes, A.T., and Allanson, B.R.. 1970. Ecology of the Sundays River Part II. Osmoregulation in some mayflynymphs (Ephemeroptera: Baetidae). Hydrobiologia 36: 489503.
Fretwell, S.D. 1987. Food chain dynamics: The central theory of ecology? Oikos 50: 291301.
Garten, C.T., and Gentry, J.B.. 1976. Thermal tolerance of dragonfly nymphs. II. Comparison of nymphs from control and thermally altered environments. Physiol. Zool. 49: 206213.
Goodchild, A.J.P. 1969. The rectal glands of Halosalda lateralis Fallen (Hemiptera: Saldidae) and Hydrometra stagnorum (L.) (Hemiptera: Hydrometridae). Proc. R. ent. Soc. Lond. 44: 6270.
Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190199.
Greenslade, P.J.M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352365.
Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 11691194.
Heiman, D.R., and Knight, A.W.. 1972. Upper-lethal-temperature relations of the nymphs of the stonefly, Paragnetina media. Hydrobiologia 39: 479493.
Herbst, D.B. 1988. Comparative population ecology of Ephydra hians Say (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake (Oregon). Hydrobiologia 158: 145166.
Herbst, D.B., Conte, F.P., and Brookes, V.J.. 1988. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34: 903909.
Hildrew, A.G., and Townsend, C.R.. 1987. Organization in freshwater benthic communities, pp. 347372 in Gee, J.H.R., and Giller, P.S. (Eds.), Organization of Communities Past and Present. 27th Symposium of the British Ecological Society; Aberystwyth 1986. Blackwell, Oxford.
Hinnekint, B.O.N. 1972. Thermal pollution as a probable cause of a winter ecdysis of Aeshna cyanea (Miiller) (Anisoptera: Aeshnidae). Odonatologica 1: 163164.
Hochachka, P.W., and Somero, G.N.. 1984. Biochemical Adaptation. Princeton University Press, Princeton, NJ.
Howell, F.G., and Gentry, J.B.. 1974. Effect of thermal effluents from nuclear reactors on species diversity of aquatic insects, pp. 562571 in Gibbons, J.W., and Sharitz, R.R. (Eds.), Thermal Ecology. Atomic Energy Commission Symposium Series (Conf. 730505). Augusta, GA.
Huey, R.B., and Kingsolver, J.G.. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4: 131135.
Hynes, H.B.N. 1976. Biology of Plecoptera. A. Rev. Ent. 21: 135153.
Inland Waters Directorate. 1975. Water quality data. Alberta 1961–1973. Environment Canada, Ottawa.
Kohno, M. 1983. Plecoptera nymphs inhabiting hot springs and the scientific name of Neoperla niponensis (McLachlan). Nature and Insects 18: 5657. [In Japanese.]
Komnick, H. 1977. Chlorine cells and chloride epithelia of aquatic insects. Int. Rev. Cytol. 49: 285329.
Lamberti, G.A., and Resh, V.H.. 1983. Geothermal effects on stream benthos: Separate influences of thermal and chemical components. Can. J. Fish. Aquat. Sci. 40: 19952009.
Lamberti, G.A., and Resh, V.H.. 1985. Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia 128: 1321.
Lange, W.H. 1984. Aquatic and semiaquatic Lepidoptera. pp. 348360 in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, IA.
Leader, J.P. 1976. Marine caddis flies (Trichoptera: Philanisidae). pp. 291302 in Cheng, L. (Ed.), Marine Insects. Elsevier, New York, NY.
Leggott, M., and Pritchard, G.. 1985. The effect of temperature on rate of egg and larval development in populations of Argia vivida Hagen (Odonata: Coenagrionidae) from habitats with different thermal regimes. Can. J. Zool. 63: 25782582.
Leggott, M., and Pritchard, G.. 1986. Thermal preference and activity thresholds in populations of Argia vivida (Odonata: Coenagrion-idae) from habitats with different thermal regimes. Hydrobiologia 140: 8592.
Marshall, A.T., and Wright, A.. 1974. Ultrastructure changes associated with osmoregulation in the hind gut cells of a saltwater insect, Ephydrella sp. (Ephydridae: Diptera). Tissue and Cell 6: 301318.
Martin, W.J., and Gentry, J.B.. 1974. Effect of thermal stress on dragonfly nymphs, pp. 133145 in Gibbons, J.W., and Sharitz, R.R. (Eds.), Thermal Ecology. Atomic Energy Commission Symposium Series (Conf. 730505). Augusta, GA.
Martin, W.J., Garten, C.T, and Gentry, J.B.. 1976. Thermal tolerances of dragonfly nymphs. I. Sources of variation in estimating critical thermal maximum. Physiol. Zool. 49: 200205.
Mattice, J.S., and Dye, L.L.. 1978. Effect of a steam electric generating station on the emergence timing of the mayfly, Hexagenia bilineata (Say). Verh. int. Verein. theor. angew. Limnol. 20: 17521758.
Minshall, G.W. 1988. Stream ecosystem theory: A global perspective. J. N. Am. benthol. Soc. 7: 263288.
Mitchell, R. 1974. The evolution of thermophily in hot springs. Q. Rev. Biol. 49: 229242.
Moens, J. 1975. Ionic regulation in the haemolymph of the dragonfly, Aeshna cyanea. Arch. int. Physiol. Biochem. 83: 443451.
Mutch, R.A., and Davies, R.W.. 1984. Processing of willow leaves in two Alberta Rocky Mountain streams. Holarctic Ecol. 7: 171176.
Mutch, R.A., and Pritchard, G.. 1986. Development rates of eggs of some Canadian stoneflies (Plecoptera) in relation to temperature. J. N. Am. benthol. Soc. 5: 272277.
Nebeker, A. V. 1971. Effect of high winter water temperatures on adult emergence of aquatic insects. Water Res. 5: 777783.
Nebeker, A.V., and Lemke, A.E.. 1968. Preliminary studies on the tolerance of aquatic insects to heated waters. J. Kans. ent. Soc. 41: 413418.
Nemenz, H. 1960. On the osmotic regulation of the larvae of Ephydra cinerea. J. Insect Physiol. 4: 3844.
Nicholls, S.P. 1983. Ionic and osmotic regulation of the haemolymph of the dragonfly, Libellula quadrimaculata (Odonata: Libellulidae). J. Insect Physiol. 29: 541546.
Norling, U. 1984. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2: 127156.
Power, M.E., Stout, R.J., Cushing, C.E., Harper, P.P., Hauer, F.R., Matthews, W.J., Moyle, P.B., Statzner, B., and Wais de Badgen, I.R.. 1988. Biotic and abiotic controls in river and stream communities. J. N. Am. benthol. Soc. 7: 456479.
Pritchard, G. 1971. Argia vivida Hagen (Odonata: Coenagrionidae) in hot pools at Banff. Can. Fid Nat. 85: 187188.
Pritchard, G. 1980. The life cycle of Argia vivida Hagen in the northern part of its range (Zygoptera: Coenagrionidae). Odonatologica 9: 101106.
Pritchard, G. 1982. Life-history strategies in dragonflies and the colonization of North America by the genus Argia (Odonata: Coenagrionidae). Adv. Odonatol. 1: 227241.
Pritchard, G. 1988. Dragonflies of the Cave and Basin hot springs, Banff National Park, Alberta, Canada. Notul. odonatol. 3: 89.
Pritchard, G. 1989. The roles of temperature and diapause in the life history of a temperate-zone dragonfly: Argia vivida (Odonata: Coenagrionidae). Ecol. Ent. 14: 99108.
Pritchard, G., and Leggott, M.A.. 1987. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3: 121126.
Pritchard, G., and Mutch, R.A. 1985. Temperature, development rates and origins of mosquitoes, pp. 237249 in Lounibos, L.P., Rey, J.R., and Frank, J.H. (Eds.), Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, FL.
Pritchard, G., and Pelchat, B.. 1977. Larval growth and development of Argia vivida (Odonata: Coenagrionidae) in warm sulphur pools at Banff, Alberta. Can. Ent. 109: 15631570.
Provonsha, A.V., and McCafferty, W.P.. 1977. Odonata from Hot Brook, South Dakota with notes on their distribution patterns. Ent. News 88: 2328.
Ramsey, J.A. 1950. Osmotic regulation in mosquito larvae. J. exp. Biol. 27: 145157.
Rawson, D.S., and Moore, J.E.. 1944. The saline lakes of Saskatchewan. Can. J. Res. D 22: 141201.
Resh, V.H., and Barnby, M.A.. 1984. Distribution of shore bugs and shore flies at Sylvan Springs, Yellowstone National Park. Gt Basin Nat. 44: 99103.
Resh, V.H., and Barnby, M.A.. 1987. Distribution of the Wilbur Springs shore bug (Hemiptera: Saldidae): A product of abiotic tolerances and biotic constraints. Environ. Ent. 16: 10871091.
Resh, V.H., and Sorg, K.L.. 1983. Distribution of the Wilbur Springs shore bug (Hemiptera: Saldidae): Predicting occurrence using water chemistry parameters. Environ. Ent. 12: 16281635.
Robinson, W.H., and Turner, E.C.. 1975. Insect fauna of some Virginia thermal springs. Proc. ent. Soc. Wash. 77: 391398.
Rodgers, E.B. 1980. Effects of elevated temperatures on macroinvertebrate populations in the Browns Ferry Experimental Ecosystems, pp. 684702 in Giesy, J.P. (Ed.), Microcosms in Ecological Research. DOE Symposium Series, vol. 52, Augusta, GA.
Rupprecht, R. 1975. The dependence of emergence-period in insect larvae on water temperature. Verh. int. Verein. theor. angew. Limnol. 19: 30573063.
Schott, R.J., and Brusven, M.A.. 1980. The ecology and electrophoretic analysis of the damselfly Argia vivida Hagen, living in a geothermal gradient. Hydrobiologia 69: 261265.
Sibley, R.M., and Calow, P.. 1989. A life-cycle theory of responses to stress. Biol. J. Linn. Soc. 37: 101116.
Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? J. anim. Ecol. 46: 337365.
Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 318.
Starmühlner, F. 1969. Beitrage zur kenntnis der Biozönosen islandischer Thermalgewässer. Sitz. Ber. Ost. Akad. wiss. Math. Nat. Kl. Abt. I, 178: 83173.
Stobbart, R.H., and Shaw, J.. 1974. Salt and water balance: Excretion, pp. 362446 in Rockstein, M. (Ed.), Physiology of Insecta, vol. 5. Academic Press, New York, NY.
Stockner, J.G. 1968. Algal growth and primary productivity in a thermal stream. J. Fish. Res. Bd Can. 25: 20372058.
Stockner, J.G. 1971. Ecological energetics and natural history of Hedriodiscus truquii (Diptera) in two thermal spring communities. J. Fish. Res. Bd Can. 28: 7394.
Sutcliffe, D.W. 1960. Osmotic regulation in some euryhaline Diptera. Nature, Lond. 187: 331332.
Tones, P.I. 1978. Osmoregulation in adults and larvae of Hygrotus salinarius Wallis (Coleoptera, Dytiscidae). Comp. Biochem. Physiol. 60: 247250.
Tones, P.I., and Hammer, U.T.. 1975. Osmoregulation in Trichocorixa verticalis interiores (Sailer) (Hemiptera — Corixidae), an inhabitant of Saskatchewan saline lakes. Can. J. Zool. 53: 12071212.
Tuxen, S.L. 1944. The hot springs, their animal communities and their zoogeographical significance, pp. 1216 in The Zoology of Iceland, Vol. I, Part II. Einer Munksgard, Copenhagen.
Underwood, A.J. 1989. The analysis of stress in natural populations. Biol. J. Linn. Soc. 37: 5178.
van Everdingen, R.O. 1972. Thermal and mineral springs of the southern Rocky Mountains of Canada. Environment Canada, Ottawa.
Vannote, R.L., and Sweeney, B.W.. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667695.
Vincent, E.R. 1967. A comparison of riffle insect populations in the Gibbon River above and below the Geyser Basins, Yellowstone National Park. Limnol. Oceanogr. 12: 1826.
Walker, E.M. 1953. The Odonata of Canada and Alaska, Vol. I. University of Toronto Press, Toronto, Ont.
Ward, J.V., and Stanford, J.A.. 1982. Thermal responses in the evolutionary ecology of aquatic insects. A. Rev. Ent. 27: 97117.
Waring, G.A., Blankenship, R.R., and Bentall, R.. 1965. Thermal springs of the United States and other countries of the world — a summary. Geol. Surv. Prof. Pap. 492. U.S. Govern. Printing Office, Washington, DC.
Waringer, J.A., and Humpesch, U.H.. 1984. Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshwat. Biol. 14: 385399.
Water Survey of Canada. 1975. Compilation of hydrometeorological record — Marmot Creek Basin, Vol. 11. Water Survey of Canada, Calgary, Alta.
White, D.E. 1957 a. Thermal waters of volcanic origin. Bull. Geol. Soc. Am. 68: 16371658.
White, D.E. 1957 b. Magmatic, connate, and metamorphic waters. Bull. Geol. Soc. Am. 68: 16591682.
Whitney, R.J. 1939. The thermal resistance of mayfly nymphs from ponds and streams. J. exp. Biol. 16: 374386.
Wiegert, R.G. 1973. A general ecological model and its use in simulating algal-fly energetics in a thermal spring community, pp. 85102 in Geier, P.W., Clark, L.R., Anderson, D.J., and Nix, H.A. (Eds.), Insects: Studies in Population Management. Ecology Society of Australia (Memoirs 1), Canberra.
Wiegert, R.G., and Mitchell, R.. 1973. Ecology of Yellowstone thermal effluent systems: Intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia 41: 251271.
Wiggins, G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto, Ont.
Williams, D.D. 1991. Life history traits of aquatic arthropods in springs, pp. 63–87 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.
Winterbourn, M.J. 1968. The faunas of thermal waters in New Zealand. Tuatara 16: 111122.
Winterbourn, M.J. 1969. The distribution of algae and insects in hot spring thermal gradients at Waimangu, New Zealand. N.Z. J. mar. freshwat. Res. 3: 459465.
Winterbourn, M.J., and Brown, T.J.. 1967. Observations on the faunas of two warm streams in the Taupo thermal region. N.Z. J. mar. freshwat. Res. 1: 3850.
Wirth, W.W. 1971. The brine flies of the genus Ephydra in North America (Diptera: Ephydridae). Ann. ent. Soc. Am. 64: 357377.
Wirth, W.W., and Mathis, W.. 1979. A review of the Ephydridae (Diptera) living in thermal springs, pp. 2145 in Deonier, D.L. (Ed.), 1st Symposium on Systematics and Ecology of Ephydridae. North American Benthological Society.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Memoirs of the Entomological Society of Canada
  • ISSN: 0071-075X
  • EISSN: 1920-3047
  • URL: /core/journals/memoirs-of-the-entomological-society-of-canada
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed