Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T08:02:29.870Z Has data issue: false hasContentIssue false

Campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6·H2O, a new sulfate isostructural with görgeyite, from La Fossa Crater, Vulcano, Aeolian Islands, Italy

Published online by Cambridge University Press:  02 January 2018

Francesco Demartin*
Affiliation:
Universita` degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy
Carlo Castellano
Affiliation:
Universita` degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy
Carlo Maria Gramaccioli
Affiliation:
Universita` degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy

Abstract

The new mineral campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6·H2O, was found in an active fumarole (fumarole FA, temperature ∼350°C) at La Fossa Crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as white prismatic crystals up to 0.2 mm long, in association with adranosite, demicheleite-(Br), demicheleite-(I), argesite and sassolite. The mineral is monoclinic, space group: C2/c (no. 15) with a = 17.748(3), b = 6.982(1) c = 18.221(3) Å, β = 113.97(1)°, V = 2063(1) Å3 and Z = 4. The six strongest reflections in the powder X-ray diffraction pattern are: [dobs in Å (I)(hkl)] 6.396(100)(110), 7.507(75)(202), 2.766(60)(316), 3.380(57)(312), 5.677(55)(111), 3.166(50)(4 0 2). The empirical formula (based on 25 anions p.f.u.) is Bi2.41N1.52Na2.41K0.48 S6.07H8.08O25. The calculated density is 3.87 g cm–3. Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.051 for 3025 independent observed reflections [I > 2σ(I)]. Campostriniite is isostructural with görgeyite and belongs to the 7.CD group of the Strunz classification system. The structure contains two independent nine-fold coordinated sites, one of them located on a two-fold axis (M1) and the other one in general position (M2) essentially occupied by Bi3+ atoms and minor amounts of Na+ ions, an eight-fold coordinated site fully occupied by Na +ions and another eight-fold coordinated site occupied by NH+4 and K+ ions; three independent sulfate anions in a general position and a water molecule coordinated to M1 and located on a two-fold axis are also present.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased

References

Borodaev, Y.S., Garavelli, A., Garbarini, C, Grillo, S.M., Mozgova, N.N., Organova, N.I., Trubkin, N.V. and Vurro, F. (2000) Rare sulfosalts from Vulcano, Aeolian Islands, Italy. III. Wittite and cannizzarite. The Canadian Mineralogist, 38, 2334.CrossRefGoogle Scholar
Busigny, V., Cartigny, P., Philippot, P and Javoy, M. (2003) Ammonium quantification in muscovite by infrared spectroscopy. Chemical Geology, 198, 2131.CrossRefGoogle Scholar
Bruker (2001) SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, CM. and Russo, M. (2011) Vulcano. Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana Ed., Cremona, Italy, 344 pp, ISBN 978-88-905541-0-0.Google Scholar
Casari, B.M. and Langer, V. (2007) Syntheses and crystal structures of hydrated ternary cerium sulfates: mixed-valence K5Ce2(S O4)6-H2O and K2Ce(SO4)3-H2O. Zeitschrift fur Anorganische und Allgemeine Chemie, 633, 10551061.CrossRefGoogle Scholar
Demartin, F., Campostrini, I. and Gramaccioli, CM. (2009a) Panichiite, natural ammonium hexachlor-ostannate, (NH4)2SnCl6 from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 367372.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, CM. and Campostrini, I. (20096) Brontesite, (NH4)3PbCl5, a new product of fumarolic activity from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 12371243.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, CM., Campostrini, I. and Pilati, T. (2010a) Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 95, 382385.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, CM. and Campostrini, I. (20106) Adranosite, (NH4)4NaAl2(SO4)4Cl(OH)2j a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, CM. and Campostrini, I. (2010c) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C and Gramaccioli, CM. (2012) Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. A first example of the [Bi2Clio] ∼ anion. American Mineralogist, 97, 14461451.CrossRefGoogle Scholar
Demartin, F., Castellano, C and Campostrini, I. (2013) Aluminopyracmonite, (NH4)3A1(SO4)3, a new ammonium aluminium sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 77, 443451.CrossRefGoogle Scholar
Demartin, F., Castellano, C and Campostrini, I. (2014) Therasiaite, (NH4)3KNa2Fe2+Fe3+(SO4)3Cl5, a new sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 203213.CrossRefGoogle Scholar
Ercit, S., Cerny, P. and Hawthorne, F.C (1993) Cesstibtantite—a geologic introduction to the inverse pyrochlores. Mineralogy and Petrology, 48, 235255.CrossRefGoogle Scholar
Farmer, V.C (editor) (1974) The Infrared Spectra of Minerals. Mineralogical Society Monograph 4. The Mineralogical Society, London.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Filatov, S.K., Vergasova, L.P., Siidra, S.V., Krivovichev, S.V. and Kretser, Y.L. (2013) Markhiniite, IMA 2012-040, CNMNC Newsletter No. 15, February 2013, page 2. Mineralogical Magazine, 77, 112.Google Scholar
Garavelli, A., Pinto, D., Bindi, L. and Mitolo, D. (2013) Leguernite, IMA 2013-051. CNMNC Newsletter No. 17, October 2013, page 3002. Mineralogical Magazine, 77, 29973005.Google Scholar
Gorogotskaya, L.I., Litvin, A.L., Ostapenko, S.S. and Voloshin, A.V. (1996) Crystal structure of cesstib-tantite. Mineralogical Zhurnal, 18(6), 9—13.Google Scholar
Hamdi, B., El Feki, H., Savariault, J.M. and Ben Salah, A. (2007) Synthesis and distribution of cations in substituted lead phosphate lacunar apatites. Materials Research Bulletin, 42, 299311.CrossRefGoogle Scholar
Hawthorne, F.C, Krivovichev, S.V. and Burns, P.C (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals—Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and Nordstrom, B.K. , editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
T.J.B., Hollandand Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship I. Derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relation-ship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Pinto, D., Balic Zunic, T., Garavelli, A., Garbarino, C, Makovicky, E. and Vurro, F. (2006) First occurrence of close-to-ideal kirkiite at Vulcano (Aeolian Islands, Italy): chemical data and single crystal X-ray study. European Journal of Mineralogy, 18, 393401.CrossRefGoogle Scholar
Pinto, D., Garavelli, A. and Mitolo, D. (2014) Baliczunicite, Bi2O(SO4)2, a new fumarole mineral from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 78, 10431055.CrossRefGoogle Scholar
Popova, V.I., Popov, V.A., Rudashevskiy, N.S., Glavatskikh, S.F., Polyakov, V.O. and Bushsmakin, A.F. (1987) Nabokoite Cu7TeO4(SO4)5KCl and atlasovite Cu6Fe3+Bi3+O4(SO4)5KCl. New minerals of volcanic exhalations. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116, 358367 [in Russian].Google Scholar
Rogner, P. (2005) Riomarinait, ein neues Wismutmineral vom Abbau Falcacci, Rio Marina, Elba (Italien). Aufschluss, 56, 5360.Google Scholar
Sheldrick, G.M. (2000) SADABS Area-Detector Absorption Correction Program. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112122.Google Scholar
Smith, G.V. and Walls, R. (1980) The crystal structure of Gorgeyite K2SO4-5CaSO4-H2O. Zeitschrift fur Kristallographie, 151, 4960.Google Scholar
Stanley, C.J., Roberts, A.C., Harris, D.C., Criddle, A.J. and Szymanski, J.T. (1992) Cannonite, Bi2O(OH)2SO4, a new mineral from Marysvale, Utah, USA. Mineralogical Magazine, 56, 605609.CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables (9’ ed.) E. Schweizerbart’ sche Verlagsbuch-handlung. Stuttgart, Germany.Google Scholar
Witzke, T., Steins, M., Doering, T., Schuckmann, W., Wegner, R. and Poellmann, H. (2011) Fluornatromicrolite (Na,Ca,Bi)2Ta2O6F, a new mineral species from Quixaba, Paraiba, Brazil. The Canadian Mineralogist, 49, 11051110.CrossRefGoogle Scholar
Supplementary material: PDF

Demartin et al. supplementary material

Structure factors

Download Demartin et al. supplementary material(PDF)
PDF 71.3 KB