Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T03:23:59.032Z Has data issue: false hasContentIssue false

Classifying minerals and their related names in a relational database

Published online by Cambridge University Press:  20 April 2023

Liubomyr Gavryliv*
Affiliation:
Comenius University, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova, Bratislava, Slovakia
Vitalii Ponomar
Affiliation:
University of Oulu, Faculty of Technology, Fiber and Particle Engineering Research Unit, Pentti Kaiteran katu 1, Oulu, Finland
Marián Putiš
Affiliation:
Comenius University, Faculty of Natural Sciences, Department of Mineralogy, Petrology and Economic Geology, Ilkovičova, Bratislava, Slovakia
*
Corresponding author: Liubomyr Gavryliv; Email: liubomyr.gavryliv@uniba.sk

Abstract

The categorisation of minerals and their related names, such as synonyms, obsolete or historical names, varieties or mixtures, is an asset for designing an interoperable and consistent mineralogical data warehouse. An enormous amount of this data, provided by mindat.org and other resources, was reviewed and analysed during the research. The analysis indicates the existence of several categories of (1) the abstract titles or designations representing the link to the original material or a group of names or substances without actual physical representation, and (2) the unique names representing actual physical material, compounds, or an aggregate of one or more minerals. A revision of the dependency between the categories attributes stored in a database (e.g. chemical properties, physical properties) and their classification status assigned allowed us to design a robust prototype for maintaining database integrity and consistency. The proposed scheme allows standardisation and structuring of officially regulated and maintained species, e.g. IMA-approved, and, in addition, unregulated ones.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey V Krivovichev

References

Allan, T. (1814) Mineralogical Nomenclature: Alphabetically Arranged, with Synoptic Tables of the Chemical Analyses of Minerals. Caledonian Mercury Press, Edinburgh, 237 pp.Google Scholar
Angel, R. (1986) Polytypes and polytypism. Zeitschrift für Kristallographie-Crystalline Materials, 176, 193204.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2001) Handbook of Mineralogy. Mineralogical Society of America, Chantilly, Viginia, USA.Google Scholar
Armbruster, T. (2002) Revised nomenclature of högbomite, nigerite, and taaffeite minerals. European Journal of Mineralogy, 14, 389395.Google Scholar
Bačík, P. and Fridrichová, J. (2021) Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals. American Mineralogist, 106, 851861.Google Scholar
Bačík, P., Miyawaki, R., Atencio, D., Cámara, F. and Fridrichová, J. (2017) Nomenclature of the gadolinite supergroup. European Journal of Mineralogy, 29, 10671082.Google Scholar
Bailey, S.W. (1977) Report of the IMA-IU Cr. joint committee on nomenclature. American Mineralogist, 62, 411415.Google Scholar
Bayliss, P. (2000) Glossary of Obsolete Mineral Names. The Mineralogical Record, Tucson, USA.Google Scholar
Beeri, C., Bernstein, P.A. and Goodman, N. (1989) A sophisticate's introduction to database normalization theory. Pp. 468479 in: Readings in Artificial Intelligence and Databases. (Mylopolous, John and Brodie, Michael, Editors). Morgan Kaufmann Publishers, Inc. https://doi.org/10.1016/B978-0-934613-53-8.50035-2Google Scholar
Bentabol, M., Cruz, M.R. and Sobrados, I. (2010) Chemistry, morphology and structural characteristics of synthetic Al-lizardite. Clay Minerals, 45, 131143.Google Scholar
Beurlen, H., Soares, D.R., Thomas, R., Prado-Borges, L.E. and Castro, C. de. (2005) Mineral chemistry of tantalate species new in the Borborema Pegmatitic Province, Northeast Brazil. Anais da Academia Brasileira de Ciências, 77, 169182.Google Scholar
Brett, R. and Higgins, G. (1967) Cliftonite in meteorites: A proposed origin. Science, 156, 819820.Google Scholar
Bulakh, A. (2008) Chemical, structural, and chemical-structural varieties of minerals and once again on ways to rationalize mineralogical nomenclature. Geology of Ore Deposits, 50, 702704.Google Scholar
Bulakh, A. (2010) Minerals in nature and “on Paper”: History of the commissions on new minerals in Russia and IMA and principles of classification and nomenclature of minerals. Geology of Ore Deposits, 52, 791799.Google Scholar
Burke, E.A. (2006) A mass discreditation of GQN minerals. The Canadian Mineralogist, 44, 15571560.Google Scholar
Burns, V.M. and Burns, R.G. (1976) Mineralogy of chromium. Pp. 903910 in: Chromium: Its Physicochemical Behavior and Petrologic Significance (Irvine, T., editor). Elsevier Ltd.Google Scholar
Chesnokov, B., Kotrly, M. and Nisanbajev, T. (1998) Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken—eine reiche Mineralienküche. Mineralien-Welt, 9, 5463.Google Scholar
Chester, A.H. (1896) A Dictionary of The Names of Minerals Including Their History and Etymology. John Wiley & Sons, New York, 320 pp.Google Scholar
Christy, A. and Atencio, D. (2013) Clarification of status of species in the pyrochlore supergroup. Mineralogical Magazine, 77, 1320.Google Scholar
Christy, A.G. and Putnis, A. (1988) Planar and line defects in the sapphirine polytypes. Physics and Chemistry of Minerals, 15, 548558.Google Scholar
Cleland, C.E., Hazen, R.M. and Morrison, S.M. (2021) Historical natural kinds and mineralogy: Systematizing contingency in the context of necessity. Proceedings of the National Academy of Sciences, 118, 19.Google Scholar
Cross, W., Iddings, J.P., Pirsson, L.V. and Washington, H.S. (1902) A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. The Journal of Geology, 10, 555690.Google Scholar
Dana, J.D. (1868) A System of Mineralogy. John Wiley & Son, New York, 807 pp.Google Scholar
De Fourestier, J. (2002) The naming of mineral species approved by the Commission on New Minerals and Mineral Names of the International Mineralogical Association: a brief history. The Canadian Mineralogist, 40, 17211735.Google Scholar
De Fourestier, J. (2014) Commission in New Minerals, Nomenclature and Classification (CNMNC) Subcommittee on Unnamed Minerals (SUM) 2014 Report. International Mineralogical Association.Google Scholar
De Fourestier, J. and Ivanyuk, G.Y. (1999) Glossary of Mineral Synonyms. Mineralogical Association of Canada, Québec, Canada.Google Scholar
Deliens, M. (1978) Droogmansite, a discredited species. Bulletin de la Société française de minéralogie et de cristallographie, 101, 561562 [in French].Google Scholar
Demba, M. (2013) Algorithm for relational database normalization up to 3NF. International Journal of Database Management Systems, 5, 39.Google Scholar
Dunn, P. (1977) Achrematite discredited. American Mineralogist, 62, 170.Google Scholar
Dunn, P.J. and Mandarino, J.A. (1987) Formal definitions of type mineral specimens. American Mineralogist, 72, 12691270.Google Scholar
Egleston, T. (1892) A Catalogue of Minerals and Synonyms. John Wiley & Sons, New York, 379 pp.Google Scholar
Emmons, R., Stockwell, C. and Jones, R. (1926) Argentite and acanthite. American Mineralogist, 11, 326328.Google Scholar
Endlich, F. (1888) On some interesting derivations of mineral names. The American Naturalist, 22, 2132.Google Scholar
Evain, M., Bindi, L. and Menchetti, S. (2006) Structural complexity in minerals: twinning, polytypism and disorder in the crystal structure of polybasite,(Ag, Cu) 16 (Sb, As) 2S11. Acta Crystallographica, B62, 447456.Google Scholar
Fabries, J., Ferguson, A., Ginzburg, I., Ross, M., Seifert, F., Zussman, J., Aoki, K. and Gottardi, G. (1988) Nomenclature of pyroxenes. Mineralogical Magazine, 52, 535550.Google Scholar
Fairbridge, R.W. (1972) The Encyclopedia of Geochemistry and Environmental Sciences. Van Nostrand Reinhold, New York.Google Scholar
Ferraiolo, J.A., Dana, J.D. and Dana, E.S. (1982) A systematic classification of nonsilicate minerals. Bulletin of the American Museum of Natural History, 172, 1.Google Scholar
Fleischer, M. (1995) Glossary of Mineral Species. Minerological Record, Tucson, Arizona.Google Scholar
Gaines, R.V., Dana, J.D. and Dana, E.S. (1997) Dana's New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. John Wiley & Sons, New York.Google Scholar
Gavryliv, L., Ponomar, V., Bermanec, M. and Putiš, M. (2022a) Modern approach of designing mineralogical warehouses. 23rd Meeting of the International Mineralogical Association, Lyon, France. Abstract.Google Scholar
Gavryliv, L., Ponomar, V., Bermanec, M. and Putiš, M. (2022b) The taxonomy of mineral occurrence rarity and endemicity. The Canadian Mineralogist, 60, 731758.Google Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.Google Scholar
Guinier, A., Bokij, G., Boll-Dornberger, K., Cowley, J., Ďurovič, S., Jagodzinski, H., Krishna, P., De Wolff, P., Zvyagin, B. and Cox, D. (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallographica, A40, 399404.Google Scholar
Hata, S. (1938) Abukumalite, a new mineral from pegmatites of Isaka, Fukushima prefecture. Scientific Papers of the Institute of Physics and Chemical Research, 34, 10181023.Google Scholar
Hatert, F., Mills, S.J., Pasero, M. and Williams, P.A. (2013) CNMNC guidelines for the use of suffixes and prefixes in mineral nomenclature, and for the preservation of historical names. European Journal of Mineralogy, 25, 113115.Google Scholar
Hatert, F., Pasero, M., Mills, S.J. and Hålenius, U. (2017) How to define, redefine or discredit a mineral species? Elements, 13, 208.Google Scholar
Hatert, F., Mills, S.J., Hawthorne, F.C. and Rumsey, M.S. (2021) A comment on “An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering.” American Mineralogist, 106, 150153.Google Scholar
Hatert, F., Mills, S., Pasero, M., Miyawaki, R. and Bosi, F. (2023) CNMNC guidelines for the nomenclature of polymorphs and polysomes. Mineralogical Magazine, 87, 225232.Google Scholar
Haüy, R. (1801) Traite de Mineralogy. Chez Louis, Paris, 619 pp.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Classification of the amphiboles. Pp. 5588 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G., and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.Google Scholar
Hazen, R.M. (2019). An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering. American Mineralogist, 104, 810816.Google Scholar
Hazen, R.M., Grew, E.S., Origlieri, M.J. and Downs, R.T. (2017) On the mineralogy of the “Anthropocene Epoch.” American Mineralogist, 102, 595611.Google Scholar
Hazen, R.M., Morrison, S.M., Krivovichev, S.V. and Downs, R.T. (2022) Lumping and splitting: Toward a classification of mineral natural kinds. American Mineralogist, 107, 12881301.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.Google Scholar
Hey, M.H. (1962) An Index of Mineral Species & Varieties Arranged Chemically: With an Alphabetical Index of Accepted Mineral Names and Synonyms. British Museum (Natural History), London, 728 pp.Google Scholar
Hey, M.H. (1982) Thirty-second list of new mineral names. Mineralogical Magazine, 46, 515528.Google Scholar
Hudson, D., Wilson, A.F. and Threadgold, I.M. (1967) A new polytype of taaffeite–a rare beryllium mineral from the granulites of central Australia. Mineralogical Magazine and Journal of the Mineralogical Society, 36, 305310.Google Scholar
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341.Google Scholar
Johnson, S. (1851) On the houghite of Prof Shepard. American Journal of Science and Arts, 12, 361366.Google Scholar
Jones, J.B. and Segnit, E. (1971) The nature of opal I. Nomenclature and constituent phases. Journal of the Geological Society of Australia, 18, 5768.Google Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: The RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). De Gruyter, Berlin.Google Scholar
Lagarec, K., Rancourt, D., Bose, S., Sanyal, B. and Dunlap, R. (2001) Observation of a composition-controlled high-moment/low-moment transition in the face centered cubic Fe–Ni system: Invar effect is an expansion, not a contraction. Journal of Magnetism and Magnetic Materials, 236, 107130.Google Scholar
Larsen, A.O. (2020) Mont Saint-Hilaire: History, Geology, Mineralogy. The Canadian Mineralogist, 58, 543545.Google Scholar
Larsen, E.S. Jr and Gonyer, F. (1937) Dakeite, a new uranium mineral from Wyoming. American Mineralogist, 22, 561563.Google Scholar
Le Bas, M. and Streckeisen, A.L. (1991) The IUGS systematics of igneous rocks. Journal of the Geological Society, 148, 825833.Google Scholar
Le Maitre, R. (1984) A proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram: (on behalf of the IUGS Subcommission on the Systematics of Igneous Rocks). Australian Journal of Earth Sciences, 31, 243255.Google Scholar
Le Maitre, R.W., Streckeisen, A., Zanettin, B., Le Bas, M., Bonin, B. and Bateman, P. (2005) Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, UK.Google Scholar
Levinson, A. (1966) A system of nomenclature for rare-earth minerals. American Mineralogist, 51, 152158.Google Scholar
Lytvynov, L. (2011) On the words used as names for ruby and sapphire. Functional materials, 18, 274277.Google Scholar
Mallet, J. (1875) On achrematite, a new molybdo-arsenate of lead, from Mexico. Journal of the Chemical Society, 28, 11411147.Google Scholar
Martini, J. (1994) Two new minerals originated from bat guano combustion in Arnhem Cave, Namibia. Bulletin of the South African Speleological Association, 33, 6669.Google Scholar
Mason, R., Burton, K.W., Yuan, Y. and She, Z. (2010) Chiastolite. Gondwana Research, 18, 222229.Google Scholar
McClure, S.F., Kane, R.E. and Sturman, N. (2010) Gemstone enhancement and its detection in the 2000s. Gems & Gemology, 46, 218240.Google Scholar
McKie, D. (1963) The högbomite polytypes. Mineralogical Magazine and Journal of the Mineralogical Society, 33, 563580.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2021) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 60. Mineralogical Magazine, 85, 454458.Google Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S. (2022) IMA Commission on New Minerals, Nomenclature and Classification (CNMNC) – Newsletter 69. Mineralogical Magazine, 86, 988992, https://doi.org/10.1180/mgm.2022.115Google Scholar
Monroe, E. (1986) Green aventurine quartz: mineralogical characterization. Journal of Gemmology, 20, 8386.Google Scholar
Morello, N. (1994) «Bermannus»—the names and the things. Pp. 7381 in: Georgius Agricola, 500 Jahre. Springer.Google Scholar
Nassau, K. (1984) The early history of gemstone treatments. Gems & Gemology, 20, 2233.Google Scholar
Neumann, E. and Schmetzer, K. (1984) Mechanism of thermal conversion of colour and colour centres by heat treatment of amethyst. Neues Jahrbuch für Mineralogie Monatshefte, 1984, 272282.Google Scholar
Nickel, E.H. (1992) Solid solutions in mineral nomenclature. Mineralogy and Petrology, 46, 4953. Springer.Google Scholar
Nickel, E.H. (1993) Standardization of polytype suffixes. Mineralogical Journal, 16, 387388.Google Scholar
Nickel, E.H. (1995) Definition of a mineral. Mineralogical Magazine, 59, 767768.Google Scholar
Nickel, E.H. and Grice, J.D. (1998) The IMA Commission on New Minerals and Mineral Names: procedures and guidelines on mineral nomenclature, 1998. Mineralogy and Petrology, 64, 237263.Google Scholar
Oberti, R., Cannillo, E. and Toscani, G. (2012) How to name amphiboles after the IMA2012 report: rules of thumb and a new PC program for monoclinic amphiboles. Periodico di Mineralogia, 81, 257267.Google Scholar
Oliveira, Í.L., Brod, J.A., Junqueira-Brod, T.C., Reimold, W.U. and Fuck, R.A. (2022) The IUGS nomenclature on kalsilite-bearing volcanic rocks: A critical appraisal and recommendations. Journal of Petrology, 63, egac026.Google Scholar
Pasero, M. (2023) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA–CNMNC). http://cnmnc.units.it/Google Scholar
Pasero, M., Kampf, A.R., Ferraris, C., Pekov, I.V., Rakovan, J. and White, T.J. (2010) Nomenclature of the apatite supergroup minerals. European Journal of Mineralogy, 22, 163179.Google Scholar
Plášil, J. (2018) Mineralogy, crystallography and structural complexity of natural uranyl silicates. Minerals, 8, 551.Google Scholar
Ponomar, V., Gavryliv, L. and Putiš, M. (2023) The spatial and temporal evolution of mineral discoveries and their impact on mineral rarity. American Mineralogist, https://doi.org/10.2138/am-2022-8491 [in press].Google Scholar
Povarennykh, A.S. (1972) Crystal Chemical Classification of Minerals. Plenum Press, New York, 725 pp.Google Scholar
Rieder, M., Cavazzini, G., D'yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.W., Mueller, G., Neiva, A.M. and Radoslovich, E.W. (1998) Nomenclature of the micas. Clays and Clay Minerals, 46, 586595.Google Scholar
Rinne, F. (1924) VIII. Röntgenographische Diagnostik beim Brennen von Kalkstein, Dolomit, Kaolin und Glimmer. Zeitschrift für Kristallographie-Crystalline Materials, 61, 113124.Google Scholar
Rogers, A.F. (1913) The nomenclature of minerals. Proceedings of the American Philosophical Society, 52, 606615.Google Scholar
Schaller, W. and Stevens, R. (1941) The validity of paragonite as a mineral species. American Mineralogist, 26, 541545.Google Scholar
Schrauf, A. (1873) Schröckingerit, ein neues Mineral von Joachimsthal. Tschermaks Mineralogische und Petrographische Mitteilungen, 3, 137138.Google Scholar
Schumacher, C.F. (1801) Versuch eines Verzeichnisses der in den Dänisch-Nordischen Staaten sich findenden einfachen Mineralien. Brunner, Copenhagen, 172 pp.Google Scholar
Schumann, W. (2002) Gemstones of the World, Revised Edition. Sterling Publications, New York, 272 pp.Google Scholar
Sejkora, J., Skoda, R. and Ondrus, P. (2006) New naturally occurring mineral phases from the Krásno-Horní Slavkov area, western Bohemia, Czech Republic. Journal of Geosciences, 51, 159187.Google Scholar
Sharygin, V.V., Britvin, S.N., Kaminsky, F.V., Wirth, R., Nigmatulina, E.N., Yakovlev, G.A., Novoselov, K.A. and Murashko, M.N. (2021) Ellinaite, CaCr2O4, a new natural post-spinel oxide from Hatrurim Basin, Israel, and Juína kimberlite field, Brazil. European Journal of Mineralogy, 33, 727742.Google Scholar
Smith, J. and Brown, W. (1988) Feldspar Minerals, Crystal Structures, Physical, Chemical and Microtextural Properties. Springer, Berlin–Heidelberg–New York, pp. 828.Google Scholar
Smith, D.G. and Nickel, E.H. (2007) A system of codification for unnamed minerals: Report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 983990.Google Scholar
Streckeisen, A. (1980) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks IUGS Subcommission on the systematics of igneous rocks. Geologische Rundschau, 69, 194207.Google Scholar
Ström, P. (1821) Undersökning af ett nytt Fossil. Kungliga Vetenskaps-Academiens Handlingar, 1821, 160163.Google Scholar
Strunz, H. and Nickel, E. (2001) Strunz Mineralogical Tables. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp.Google Scholar
Tredoux, M., Zaccarini, F., Garuti, G. and Miller, D. (2016) Phases in the Ni–Sb–As system which occur in the Bon Accord oxide body, Barberton greenstone belt, South Africa. Mineralogical Magazine, 80, 187198.Google Scholar
Vavra, N. (1993) Chemical characterization of fossil resins (“amber”) – A critical review of methods, problems and possibilities: determination of mineral species, botanical sources and geographical attribution. Pp. 147157 in: Proceedings of a Symposium held in Neukirchen am Großvenediger, September, 1990 (Höck, V. and Koller, F., editors). Geologischen Bundesanstalt, Wien, Austria.Google Scholar
Voloshin, A.V., Pakhomovskii, Y.A., Stepanov, V.I. and Tyusheva, E.N. (1983) Natrobistantite (Na, Cs) Bi (Ta, Nb, Sb) 4O12 – a New mineral from granite pegmatites. Mineralogicheskii Zhurnal, 5, 8286 [in Russian with English abstract].Google Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.Google Scholar
Werner, A.G. (1817) Abraham Gottlob Werner's Letztes Mineral-System: Aus dessen Nachlasse auf oberbergamtliche Anordnung herausgegeben. und mit Erläuterungen versehen. Craz and Gerlach and Carl Gerold. Freyberg and Wien.Google Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Wilk, H. and Medenbach, O. (1986) The Magic of Minerals. Springer, Berlin, 202 pp.Google Scholar
Winand, M. (2011) SQL performance explained. Development, 2011, 38.Google Scholar
Winter, J.K., Okamura, F.P. and Ghose, S. (1979) A high-temperature structural study of high albite, monalbite, and the analbite--> monalbite phase transition. American Mineralogist, 64, 409423.Google Scholar
Wojnarowska, A., Dziel, T., Gałązka-Friedman, J. and Karwowski, Ł. (2008) New mineralogical phases identified by Mössbauer measurements in Morasko meteorite. Hyperfine Interactions, 186, 167171.Google Scholar
Zhang, R., Peng, M., Tian, H., Peng, Z., Ma, J., Han, F. and Jing, Z. (1980) New mineral: ashanite (Nb, Ta, U, Fe, Mn)4O8. K'o Hsueh T'ung Pao; (China), 25, 648650.Google Scholar
Zhang, J., Lu, T., Wang, M. and Chen, H. (2011) The radioactive decay pattern of blue topaz treated by neutron irradiation. Gems and Gemology, 47, 302307.Google Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Bernes, B., Schüller, W. and Pushcharovskii, D.Yu. (2021) Ta-free Nb-dominant ixiolite analogue from the Eifel Paleovolcanic Region, Germany, and its crystal structure. On the problem of “ashanite”. Geology of Ore Deposits, 63, 805811.Google Scholar