Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-21T10:59:26.049Z Has data issue: false hasContentIssue false

Equation of state of hercynite, FeAl2O4, and high-pressure systematics of Mg-Fe-Cr-Al spinels

Published online by Cambridge University Press:  02 January 2018

F. Nestola*
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
B. Periotto
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
C. Anzolini
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
G. B. Andreozzi
Affiliation:
Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
A. B. Woodland
Affiliation:
Institut für Geowissenschaften, Geozentrum der Goethe-Universität, Altenhöferallee 1, D-60438, Frankfurt am Main, Germany
D. Lenaz
Affiliation:
Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss 8, I-34127 Trieste, Italy
M. Alvaro
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
F. Princivalle
Affiliation:
Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via Weiss 8, I-34127 Trieste, Italy

Abstract

In this work a single crystal of synthetic hercynite, FeAl2O4, was investigated by X-ray diffraction up to 7.5 GPa and at room temperature, in order to determine its pressure–volume equation of state. The unit-cell volume decreases non-linearly with a reduction of 3.4% (i.e. 18.43 Å3). The pressure–volume data were fitted to a third-order Birch-Murnaghan equation of state providing the following coefficients: V0 = 542.58(3)Å3, KT0 = 193.9(1.7) GPa, K' = 6.0(5). These results are consistent with previous investigations of Cr and Al spinels measured with the same experimental approach but the KT0 differs significantly from the experimental determination carried out more than 40 years ago by Wang and Simmons (1972) by the pulse echo overlap method. Our new results were used to redetermine the FeAl2O4(hercynite) = FeO(wüstite) + Al2O3(corundum) equilibrium in P–T space and obtain geobarometric information for Cr-Al spinels found as inclusions in diamond.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreozzi, G.B. and Lucchesi, S. (2002) Intersite distribution of Fe 2+ and Mg in the spinel (sensu stricto)–hercynite series by single-crystal X-ray diffraction. American Mineralogist, 87, 11131120.CrossRefGoogle Scholar
Angel, R.J. (2000) Equations of state. Pp. 3559. in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M., Downs, R.T., editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Angel, R.J. and Finger, L. (2011) SINGLE: a program to control single-crystal diffractometers. Journal of Applied Crystallography, 44, 247251.CrossRefGoogle Scholar
Angel, R.J., Allan, D., Miletich, R. and Finger, L. (1997) The use of quartz as an internal pressure standard in high-pressure crystallography. Journal of Applied Crystallography, 30, 461466.CrossRefGoogle Scholar
Angel, R.J., Downs, R. and Finger, L. (2000) Hightemperature-high-pressure diffractometry. Pp. 559597. in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M., Downs, R.T., editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Angel, R.J., Bujak, M., Zhao, J., Gatta, G.D. and Jacobsen, S.D. (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. Journal of Applied Crystallography, 40, 2632.CrossRefGoogle Scholar
Angel, R.J., Gonzalez-Platas, J. and Alvaro, M. (2014a). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie, 229, 405419.Google Scholar
Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nimis, P. and Nestola, F. (2014b) Geobarometry from hostinclusion systems: the role of elastic relaxation. American Mineralogist, 99(10), 21462149.CrossRefGoogle Scholar
Angel, R.J., Alvaro, M., Nestola, F. and Mazzucchelli, M.L. (2015) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems. Russian Geology and Geophysics, 56, 211220.CrossRefGoogle Scholar
Ballhaus, C., Berry, R. and Green, D. (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature, 349, 437440.CrossRefGoogle Scholar
Ballhaus, C., Berry, R. and Green, D. (1991) High pressure experimental calibration of the olivineorthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contributions to Mineralogy and Petrology, 107, 2740.CrossRefGoogle Scholar
Birch, F. (1947) Finite elastic strain of cubic crystals. Physical Review, 71, 809. Bohlen, S.R., Dollase, W.A. and Wall, V.J. (1986) Calibration and applications of spinel equilibria in the system FeO-Al2O3-SiO2 . Journal of Petrology, 27, 11431156.Google Scholar
Bosi, F., Hålenius, U. and Skogby, H. (2008) Stoichiometry of synthetic ulvöspinel single crystals. American Mineralogist, 93, 13121316.CrossRefGoogle Scholar
Fabriès, J. (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contributions to Mineralogy and Petrology, 69, 329336.CrossRefGoogle Scholar
Hålenius, U., Skogby, H. and Andreozzi, G.B. (2002) Influence of cation distribution on the optical absorption spectra of Fe3+-bearing spinel ss– hercynite crystals: evidence for electron transitions in VIFe 2+ -VIFe3+ clusters. Physics and Chemistry of Minerals, 29, 319330.Google Scholar
Harrison, R.J., Redfern, S.A.T. and O’Neill, H.St.C. (1998) The temperature dependence of the cation distribution in synthetic hercynite (FeAl2O4) from in-situ neutron diffraction refinements. American Mineralogist, 83, 10921099.CrossRefGoogle Scholar
Holland, T. and Powell, R. (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O–CaO-MgO-MnO–FeO-Fe2O3– Al2O3–TiO2–SiO2-C-H2-O2. Journal of Metamorphic Geology, 8, 89124.CrossRefGoogle Scholar
Holland, T. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 16, 309343.CrossRefGoogle Scholar
King, H. and Finger, L. (1979) Diffracted beam crystal centering and its application to high-pressure crystallography. Journal of Applied Crystallography, 12, 374378.CrossRefGoogle Scholar
Lenaz, D. and Skogby, H. (2013) Structural changes in the FeAl2O4-FeCr2O4 solid solution series and their consequences on natural Cr-bearing spinels. Physics and Chemistry of Minerals, 40, 587595.CrossRefGoogle Scholar
Lenaz, D., Logvinova, A.M., Princivalle, F. and Sobolev, N.V. (2009) Structural parameters of chromite included in diamond and kimberlites from Siberia: A new tool for discriminating ultramafic source. American Mineralogist, 94, 10671070.CrossRefGoogle Scholar
Lenaz, D., Skogby, H., Logvinova, A.M., Sobolev, N.V. and Princivalle, F. (2013) A micro-Mössbauer study of chromites included in diamond and other mantlerelated rocks. Physics and Chemistry of Minerals, 40, 671679.CrossRefGoogle Scholar
Milani, S., Nestola, F., Alvaro, M., Pasqual, D., Mazzucchelli, M.L., Domeneghetti, M.C. and Geiger, C.A. (2015) Diamond–garnet geobarometry: The role of garnet compressibility and expansivity. Lithos, 227, 140147.CrossRefGoogle Scholar
Miletich, R., Allan, D.R. and Kuhs, W.F. (2000) Highpressure single-crystal techniques. Pp. 445520. in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M., Downs, R.T., editors). Reviews in Mineralogy & Geochemistry, 41. Mineralogical Society of America and the Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Nestola, F., Ballaran, T.B., Balic-Zunic, T., Princivalle, F., Secco, L. and Dal Negro, A. (2007) Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: The independency on the degree of cation order. American Mineralogist, 92, 18381843.CrossRefGoogle Scholar
Nestola, F., Smyth, J.R., Parisatto, M., Secco, L., Princivalle, F., Bruno, M., Prencipe, M. and Dal Negro, A. (2009) Effects of non-stoichiometry on the spinel structure at high pressure: Implications for Earth’s mantle mineralogy. Geochimica et Cosmochimica Acta, 73, 489492.CrossRefGoogle Scholar
Nestola, F., Angel, R.J., Zhao, J., Garrido, C.J., Sánchez-Vizcaíno, V.L., Capitani, G. and Mellini, M. (2010) Antigorite equation of state and anomalous softening at 6 GPa: an in situ single-crystal X-ray diffraction study. Contributions to Mineralogy and Petrology, 160, 3343.CrossRefGoogle Scholar
Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H. and Fedortchouk, Y. (2011) First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth’s mantle. Earth and Planetary Science Letters, 305, 249255.CrossRefGoogle Scholar
Nestola, F., Periotto, B., Andreozzi, G.B., Bruschini, E. and Bosi, F. (2014) Pressure-volume equation of state for chromite and magnesiochromite: a singlecrystal X-ray diffraction investigation. American Mineralogist, 99, 12481253.CrossRefGoogle Scholar
O’Neill, H.St.C. (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contributions to Mineralogy and Petrology, 77, 185194.CrossRefGoogle Scholar
O’Neill, H.St.C. and Wall, V. (1987) The Olivine– orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth’s Upper Mantle. Journal of Petrology, 28, 11691191.CrossRefGoogle Scholar
Perinelli, C., Andreozzi, G.B., Conte, A.M., Oberti, R. and Armienti, P. (2012) Redox state of subcontinental lithospheric mantle and relationships with metasomatism: insights from spinel peridotites from northern Victoria Land (Antarctica). Contributions to Mineralogy and Petrology, 164, 10531067.CrossRefGoogle Scholar
Perinelli, C., Bosi, F., Andreozzi, G.B., Conte, A.M. and Armienti, P. (2014) Geothermometric study of Crspinels of peridotite mantle xenoliths from northern Victoria Land (Antarctica). American Mineralogist, 99, 839846.CrossRefGoogle Scholar
Princivalle, F., Martignago, F., Nestola, F. and Negro, A.D. (2012) Kinetics of cation ordering in synthetic Mg(Al,Fe3+)2O4 spinels. European Journal of Mineralogy, 24, 633643.CrossRefGoogle Scholar
Ralph, R. and Finger, L.W. (1982) A computer program for refinement of crystal orientation matrix and lattice constants from diffractometer data with lattice symmetry constraints. Journal of Applied Crystallography, 15, 537539.CrossRefGoogle Scholar
Sack, R.O. and Ghiorso, M.S. (1991) Chromian spinels as petrogenetic indicators; thermodynamics and petrological applications. American Mineralogist, 76, 827847.Google Scholar
Schollenbruch, K., Woodland, A.B. and Frost, D.J. (2010) The stability of hercynite at high pressures and temperatures. Physics and Chemistry of Minerals, 37, 137143.CrossRefGoogle Scholar
Shulters, J.C. and Bohlen, S.R. (1989) The stability of hercynite and hercynite-gahnite spinels in corundumor quartz-bearing assemblages. Journal of Petrology, 30, 10171031.CrossRefGoogle Scholar
Slack, G.A. (1964) FeAl2O4-MgAl2O4: Growth and some thermal, optical, and magnetic properties of mixed single crystals. Physical Review, 134, A1268. Stachel, T. and Harris, J. (2008) The origin of cratonic diamonds-constraints from mineral inclusions. Ore Geology Reviews, 34, 532.Google Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005) Thermodynamics of mantle minerals-I. Physical properties. Geophysical Journal International, 162, 610632.CrossRefGoogle Scholar
Taran, M.N., Parisi, F., Lenaz, D. and Vishnevskyy, A.A. (2014) Synthetic and natural chromium bearing spinels: an optical spectroscopy study. Physics and Chemistry of Minerals, 41, 593602.CrossRefGoogle Scholar
Wang, H. and Simmons, G. (1972) Elasticity of some mantle crystal structures: 1. Pleonaste and hercynite spinel. Journal of Geophysical Research, 77, 43794392.CrossRefGoogle Scholar