Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T08:33:32.987Z Has data issue: false hasContentIssue false

Ammoniomathesiusite, a new uranyl sulfate–vanadate mineral from the Burro mine, San Miguel County, Colorado, USA

Published online by Cambridge University Press:  29 May 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
*
Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral ammoniomathesiusite (NH4)5(UO2)4(SO4)4(VO5)·4H2O, was found in the Burro mine, San Miguel County, Utah, USA, where it occurs as a secondary phase on asphaltum/quartz matrix in association with ammoniozippeite, gypsum, jarosite and natrozippeite. The mineral forms pale yellow to greenish-yellow prisms, up to ~0.3 mm long, with pale-yellow streak and bright yellow–green fluorescence. Crystals are transparent and have vitreous lustre. The mineral is brittle, with Mohs hardness of 2½, stepped fracture and two cleavages: excellent on {110} and good on {001}. The calculated density is 3.672 g/cm3. Ammoniomathesiusite is optically uniaxial (–) with ω = 1.653(2) and ε = 1.609(2) (white light). Pleochroism is: O = green-yellow, E = colourless; O > E. Electron microprobe analyses yielded the empirical formula [(NH4)4.75(UO2)4(SO4)4(VO5)·4(H2.07O). The five strongest powder X-ray diffraction lines are [dobs Å(I)(hkl)]: 10.57(46)(110), 7.10(62)(001), 6.41(100)(101), 3.340(35)(240) and 3.226(44)(141). Ammoniomathesiusite is tetragonal, P4/n with a = 14.9405(9), c = 7.1020(5) Å, V = 1585.3(2) Å3 and Z = 2. The structure of ammoniomathesiusite (R1 = 0.0218 for 3427 I > 2σI) contains heteropolyhedral sheets based on [(UO2)4(SO4)4(VO5)]5– clusters. The structure is identical to that of mathesiusite, with ${\rm NH}_{\rm 4}^{\rm +} $ in place of K+.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012) SIR2011: a new package for crystal structure determination and refinement. Journal of Applied Crystallography, 45, 357361.Google Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.Google Scholar
Carter, W.D. and Gualtieri, J.L. (1965) Geology and uranium–vanadium deposits of the La Sal quadrangle, San Juan County, Utah, and Montrose County, Colorado. United States Geological Survey Professional Paper, 508.Google Scholar
Chernorukov, N.G., Suleymanov, E.V., Knyazev, A.V., Vyshinski, N.N. and Klimov, E.Y. (2000) Vibrational spectra of uranyl vanadates of mono- and divalent metals. Zhurnal Obshchey Khimii, 70, 14181424.Google Scholar
Evans, H.T. Jr. (1991) Metamunirite, a new anhydrous sodium metavanadate from San Miguel County, Colorado. Mineralogical Magazine, 55, 509513.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs. bond length in O···O hydrogen bonds. Acta Crystallographica, B44, 341344.Google Scholar
Friedel, C. and Cumenge, E. (1899) Sur un nouveau minerai d'urane, la carnotite. Comptes rendus de l'Académie des sciences de Paris, 128, 532534.Google Scholar
Frost, R.L., Erickson, K.L., Weier, M.L. and Carmody, O. (2005) Raman and infrared spectroscopy of selected vanadates. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 61A, 829834.Google Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.Google Scholar
Heyns, A.M., Venter, M.W. and Range, K.-J. (1987) The vibrational spectra of NH4VO3 at elevated temperatures and pressures. Zeitschrift für Naturforshung, 42b, 843852.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Nash, B.P., Marty, J. and Hughes, J.M. (2017) Burroite, Ca2(NH4)2(V10O28)·15H2O, a new decavanadate mineral from the Burro mine, San Miguel County, Colorado. The Canadian Mineralogist, 55, 473481.Google Scholar
Kampf, A.R., Plášil, J., Olds, T.A., Nash, B.P. and Marty, J. (2018) Ammoniozippeite, a new uranyl sulfate from the Blue Lizard mine, San Juan County, Utah, and the Burro mine, San Miguel County, Colorado, USA. The Canadian Mineralogist, 56, 235245.Google Scholar
Knyazev, A.V. (2000) Synthesis, structure and properties of uranyl vanadates of mono-, di- and trivalent metals. PhD thesis, N.I. Lobachevsky State University of Nizhny Novgorod, Russia.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship – Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Obbade, S., Yagoubi, S., Dion, C., Saadi., M. and Abraham, F. (2003) Synthesis, crystal structure and electrical characterization of two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6. Journal of Solid State Chemistry, 174, 1931.Google Scholar
Plášil, J., Veselovský, F., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Škácha, P. and Kasatkin, A.V. (2014) Mathesiusite, K5(UO2)4(SO4)4(VO5)(H2O)4, a new uranyl vanadate-sulfate from Jáchymov, Czech Republic. American Mineralogist, 99, 625632.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantification (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) Crystal chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. Chemistry of Materials, 12, 12481259Google Scholar
Shawe, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. United States Geological Survey Professional Paper, 576-F.Google Scholar
Sheldrick, G.M. (2015) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Unruh, D.K., Quicksall, A., Pressprich, L., Stoffer, M., Qiu, J., Nuzhdin, K., Wub, W., Vyushkova, M. and Burns, P.C. (2012) Synthesis, characterization, and crystal structures of uranyl compounds containing mixed chromium oxidation states. Journal of the Solid State Chemistry, 191, 162166.Google Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material 1

Download Kampf et al. supplementary material(File)
File 372 KB