Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T18:34:05.080Z Has data issue: false hasContentIssue false

Can nanodiamonds grow in serpentinite-hosted hydrothermal systems? A theoretical modelling study

Published online by Cambridge University Press:  05 July 2018

F. C. Manuella*
Affiliation:
Via Dell’Oro 137, I-95123, Catania, Italy
*

Abstract

Nanodiamonds can be synthesized hydrothermally in the laboratory by using a C-O-H fluid in the graphite stability field, in which the graphite/nanodiamond transition depends on the crystal size as a function of temperature. In nature, the hydrothermal circulation of seawater in serpentinites plays an important role in the carbon speciation in the oceanic crust and exposed mantle, in which hydrocarbons (mainly CH4) of abiogenic origin (via Fischer-Tropsch-type reaction) and occasionally graphite particles are detected. Can nanodiamonds nucleate and grow in serpentinite-hosted hydrothermal systems? To answer this question, a theoretical modelling study which compares the physico-chemical conditions in hydrothermal synthesis with those observed in modern and fossil serpentinite-hosted hydrothermal systems is proposed. Nanodiamonds are predicted to precipitate from a C-O-H fluid, consisting of CH4-CO2-H2O at 350 – 400°C and P<0.2 GPa near the FMQ buffer (Fayalite-Magnetite-Quartz), which are conditions compatible with those existing in serpentinite-hosted hydrothermal systems. In these environments, carbon-supersaturated fluids can be derived from water consumption (serpentine formation) under low water/rock ratios, which may promote the growth of nanodiamonds. This theoretical approach sheds light on the intriguing problem of carbon speciation in abyssal-type hydrothermal systems, suggesting that serpentinites may host nanodiamond deposits, even though none have been found yet.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bach, W., Banerjee, N.R., Dick, H.J.B. and Baker, E.T. (2002) Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10º–16. E. Geochemistry Geophysics Geosystems, 3, 121.CrossRefGoogle Scholar
Bach, W. and Früh-Green, G.L. (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements, 6, 173178.CrossRefGoogle Scholar
Bach, W., Garrido, C.J., Paulick, H., Harvey, J. and Rosner, M. (2004) Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15ºN. Geochemistry Geophysics Geosystems, 5, 122.CrossRefGoogle Scholar
Bagrii, E.I., Safir, R.E. and Arinicheva, Y.A. (2010) Methods of the functionalization of hydrocarbons with a diamond-like structure. Petroleum Chemistry, 50, 116.CrossRefGoogle Scholar
Berndt, M.E., Allen, D.E. and Seyfried Jr., W.E. (1996) Reduction of CO2 during serpentinization of olivine at 300ºC and 500 bar. Geology, 24, 351354.2.3.CO;2>CrossRefGoogle Scholar
Boschi, C., Früh-Green, G.L., Delacour, A., Karson, J.A. and Kelley, D.S. (2006). Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30ºN). Geochemistry Geophysics Geosystems, 7, Q01004, doi:10.1029/2005GC001074.CrossRefGoogle Scholar
Bradley, A.S. and Summons, R.E. (2010) Multiple origins of methane at the Lost City Hydrothermal Field. Earth and Planetary Science Letters, 297, 3441.CrossRefGoogle Scholar
Bröll, D., Kaul, C., Krämer, A., Krammer, P., Richter, T., Jung, M., Vogel, H. and Zehner, P. (1999) Chemistry in supercritical water. Angewandte Chemie, 38, 29983014.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Cartigny, P. (2005) Stable isotopes and the origin of diamonds. Elements, 1, 7984.CrossRefGoogle Scholar
Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P. and Holm, N. (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36º14N, MAR). Chemical Geology, 191, 345359.CrossRefGoogle Scholar
Chaumette, P., Verdon, C. and Boucot, P. (1995) Influence of the hydrocarbons distribution on the heat produced during Fischer-Tropsch synthesis. Topics in Catalysis, 2, 301311.CrossRefGoogle Scholar
Dai, Z.R., Bradley, J.P., Joswiak, D.J., Brownlee, D.E., Hill, H.G.M. and Genge, M.J. (2002) Possible in situ formation of meteoritic nanodiamonds in the early Solar System. Nature, 418, 157159.CrossRefGoogle ScholarPubMed
Day, H.W. (2012) A revised diamond-graphite transition curve. American Mineralogist, 97, 5262.CrossRefGoogle Scholar
Delacour, A., Früh-Green, G.L. and Bernasconi, S.M. (2008a) Sulfur mineralogy and geochemistry of serpentinites and gabbros of the Atlantis Massif (IODP Site U1309). Geochimica et Cosmochimica Acta, 72, 51115127.CrossRefGoogle Scholar
Delacour, A., Früh-Green, G.L., Bernasconi, M., Schaeffer, P. and Kelley, D.S. (2008b) Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30ºN, MAR). Geochimica et Cosmochimica Acta, 72, 36813702.CrossRefGoogle Scholar
Delescluse, M. and Chamot-Rooke, N. (2008) Serpentinization pulse in the actively deforming Central Indian Basin. Earth and Planetary Science Letters, 276, 140151.CrossRefGoogle Scholar
Deryagin, B.V. and Fedoseev, D.V. (1977) Growth of Diamond and Graphite from the Gas Phase. Nauka, Moscow, 115 pp.Google Scholar
Dias, A.S. and Barriga, F. (2006) Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36º34’N; 33º26’W) at MAR. Marine Geology, 225, 157175.CrossRefGoogle Scholar
Douville, E., Charlou, J.L., Oelkers, E.H., Bienvenu, P., Jove Colon, C.F., Donval, J.P., Fouquet, Y., Prieur, D. and Appriou, P. (2002) The rainbow vent fluids (36º14’N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid- Atlantic Ridge hydrothermal fluids. Chemical Geology, 184, 3748.CrossRefGoogle Scholar
Dufaud, F., Martinez, I. and Shilobreeva, S. (2009) Experimental study of Mg-rich silicates carbonation at 400 and 500 ºC and 1 kbar. Chemical Geology, 262, 344352.Google Scholar
Edmonds, H.N., Michael, P.J., Baker, E.T., Connelly, D.P., Snow, J.E., Langmuir, C.H., Dick, H.J.B., Muhe, R., German, C.R. and Graham, D.W. (2003) Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic. Nature, 421, 252256.CrossRefGoogle ScholarPubMed
Emmanuel, S. and Berkowitz, B. (2006) Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration. Earth and Planetary Science Letters, 243, 657668.CrossRefGoogle Scholar
Evans, B.W. (2008) Control of the product of serpentinization by the Fe2+Mg-1 exchange potential of olivine and orthopyroxene. Journal of Petrology, 49, 18731887.CrossRefGoogle Scholar
Foustoukos, D.I. and Seyfried, W.E. Jr (2004) Hydrocarbons in hydrothermal vent fluids: the role of chromium-bearing catalysts. Science, 304, 10021005.CrossRefGoogle ScholarPubMed
Frost, R.B. (1985) On the stability of sulphides, oxides, and native metals in serpentinite. Journal of Petrology, 26, 3163.CrossRefGoogle Scholar
Fu, Q., Sherwood Lollar, B., Horita, J., Lacrampe- Couloume, G. and Seyfried, W.E. Jr. (2007) Abiotic formation of hydrocarbons under hydrothermal conditions: constraints from chemical and isotope data. Geochimica et Cosmochimica Acta, 71, 19821998.CrossRefGoogle Scholar
Galli, G. (2010) Structure, stability and electronic properties of nanodiamonds. Pp. 3756. in: Computer-based Modeling of Novel Carbon Systems and their Properties (L. Colombo and A. Fasolino, editors). Carbon Materials: Chemistry and Physics, 3, Springer, Berlin.CrossRefGoogle Scholar
Gamarnik, M.Y. (1996) Energetical preference of diamond nanoparticles. Physical Review B, 54, 21502156.CrossRefGoogle ScholarPubMed
Gogotsi, Y., Kraft, T., Nickel, K.G. and Zvanut, M.E. (1998) Hydrothermal behavior of diamond. Diamonds and Related Materials, 7, 14591465.CrossRefGoogle Scholar
Hack, A.C., Thompson, A.B. and Aerts, M. (2007) Phase relations involving hydrous silicate melts, aqueous fluids, and minerals. Pp. 129185. in: Fluid–Fluid Interactions (A. Liesbcher and C.A. Heinrich, editors). Reviews in Mineralogy and Geochemistry, 65. Mineralogical Society of America and Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Hemley, R.J., Chen, Y.-C. and Yan, C.-S. (2005) Growing diamond crystals by chemical vapor deposition. Elements, 1, 105108.CrossRefGoogle Scholar
Horita, J. (2005) Some perspectives on isotope biosignatures for early life. Chemical Geology, 218, 171186.CrossRefGoogle Scholar
Huss, G.R. (2005) Meteoritic nanodiamonds: messengers from the stars. Elements, 1, 97100.CrossRefGoogle Scholar
Iyer, K., Rüpke, L.H. and Phipps Morgan, J. (2010) Feedbacks between mantle hydration and hydrothermal convection at ocean spreading centers. Earth and Planetary Science Letters, 296, 3444.CrossRefGoogle Scholar
Jedwab, J. and Boulègue, J. (1984) Graphite crystals in hydrothermal vents. Nature, 310, 4143.CrossRefGoogle Scholar
Jiang, Q., Li, J.C. and Wilde, G. (2000) The size dependence of the diamond-graphite transition. Journal of Physics: Condensed Matter, 12, 56235627.Google Scholar
Kaviani, M., Deák, P., Aradi, B., Köhler, T. and Frauenheim, T. (2013) How small nanodiamonds can be? MD study of the stability against graphitization. Diamond and Related Materials, 33, 7884.CrossRefGoogle Scholar
Kelley, D.S. and Früh-Green, G.L. (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope analyses. Journal of Geophysical Research, 104, 1043910460.CrossRefGoogle Scholar
Kennedy, S.C. and Kennedy, G.C. (1976) The equilibrium boundary between graphite and diamond. Journal of Geophysical Research, 81, 24672470.CrossRefGoogle Scholar
Klein, F. and Bach, W. (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. Journal of Petrology, 50, 3759.CrossRefGoogle Scholar
Konn, C., Charlou, J.L., Donval, J.P., Holm, N.G., Dehairs, F. and Bouillon, S. (2009) Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 258, 299314.CrossRefGoogle Scholar
Kulakova, I.I. (2004) Surface chemistry of nanodiamonds. Physics of the Solid State, 46, 636643.CrossRefGoogle Scholar
Lazar, C., McCollom, T.M. and Manning, C.E. (2012) Abiogenic methanogenesis during experimental komatiite serpentinization: Implications for the evolution of the early Precambrian atmosphere. Chemical Geology, 326–327. 102112.CrossRefGoogle Scholar
Li, Y., Qian, Y., Liao, H., Ding, Y., Yang, L., Xu, C., Li, F. and Zhou, G. (1998) A reduction-Pyrolysiscatalysis synthesis of diamond. Science, 281, 246247.CrossRefGoogle ScholarPubMed
Lou, Z., Chen, Q., Zhang, Y., Wang, W. and Qian, Y. (2003) Diamond formation by reduction of carbon dioxide at low temperatures. Journal of the American Chemical Society, 125, 93029303.CrossRefGoogle ScholarPubMed
Lou, Z., Chen, Q., Zhang, Y., Qian, Y. and Wang, W. (2004) Synthesis of large-size diamonds by reduction of dense carbon dioxide with alkali metals (K, Li). Journal of Physical Chemistry B, 108, 42394241.CrossRefGoogle Scholar
Luque, F.J., Pasteris, J.D., Wopenka, B., Rodas, M. and Barrenechea, J.F. (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. American Journal of Science, 298, 471498.CrossRefGoogle Scholar
Luque, F.J., Ortega, L., Barrenechea, J.F., Millward, D., Beyssac, O. and Huizenga, J.-M. (2009) Deposition of highly crystalline graphite from moderate-temperature fluids. Geology, 37, 275278.CrossRefGoogle Scholar
Macdonald, A.H. and Fyfe, W.S. (1985) Rate of serpentinization in seafloor environments. Tectonophysics, 116, 123135.CrossRefGoogle Scholar
Manuella, F.C. (2011) Vein mineral assemblage in partially serpentinized peridotite xenoliths from Hyblean Plateau (southeastern Sicily, Italy). Periodico di Mineralogia, 80, 247266.Google Scholar
Manuella, F.C., Carbone, S. and Barreca, G. (2012) Origin of saponite-rich clays in a fossil serpentinitehosted hydrothermal system in the crustal basement of the Hyblean Plateau (Sicily, Italy). Clays and Clay Minerals, 60, 1831.CrossRefGoogle Scholar
Manuella, F.C., Brancato, A., Carbone, S. and Gresta, S. (2013) A crustal-upper mantle model for southeastern Sicily (Italy) from the integration of petrologic and geophysical data. Journal of Geodynamics, 66, 92102.CrossRefGoogle Scholar
Marcaillou, C., Mun˜oz, M., Vidal, O., Parra, T. and Harfouche, M. (2011) Mineralogical evidence for H2 degassing during serpentinization at 300ºC/300 bar. Earth and Planetary Science Letters, 303, 281290.CrossRefGoogle Scholar
McCollom, T.M. and Bach, W. (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73, 856875.CrossRefGoogle Scholar
Melchert, B. , Devey, C.W. , German, C.R., Lackschewitz, K.S., Seifert, R., Walter, M., Mertens, C., Yoerger, D.R., Baker, E.T., Paulick, H. and Nakamura, K. (2008) First evidence for hightemperature “off-axis” venting of deep crustal heat: the Nibelungen hydrothermal field, southern Mid- Atlantic Ridge. Earth and Planetary Science Letters, 275, 6169.CrossRefGoogle Scholar
Mével, C. (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Comptes Rendus Geoscience, 335, 825852.CrossRefGoogle Scholar
Mitchell, R.H. and Crocket, J.H. (1971) Diamond genesis – A synthesis of opposing views. Mineralium Deposita, 6, 392403.CrossRefGoogle Scholar
Miura, M., Arai, S. and Mizukami, T. (2011) Raman spectroscopy of hydrous inclusions in olivine and orthopyroxene in ophiolitic harzburgite: implications for elementary processes in serpentinization. Journal of Mineralogical and Petrological Sciences, 106, 9196.CrossRefGoogle Scholar
Mozgova, N.N., Trubkin, N.V., Borodaev, Y.S., Cherkashev, G.S., Stepanova, T.V., Semkova, T.A. and Uspenskaya, T.Y. (2008) Mineralogy of massive sulfides from the Ashadze hydrothermal field, 13ºN, Mid Atlantic Ridge. The Canadian Mineralogist, 46, 545567.CrossRefGoogle Scholar
Nakhaei Pour, A., Reza Housaindokht, M., Zarkesh, J. and Faramarz Tayyari, S. (2010) Studies of carbonaceous species in alkali promoted iron catalysts during Fischer–Tropsch synthesis. Journal of Industrial and Engineering Chemistry, 16, 10251032.CrossRefGoogle Scholar
Nekhaev, A.I., Bagrii, E.I. and Maximov, A.L. (2010) Petroleum nanodiamonds: new in diamondoid naphthenes. Petroleum Chemistry, 51, 8695.CrossRefGoogle Scholar
Novikov, N.V. (1999) New trends in high-pressure synthesis of diamond. Diamonds and Related Materials, 8, 14271432.CrossRefGoogle Scholar
Pasteris, J.D. (1981) Occurrence of graphite in serpentinized olivines in kimberlite. Geology, 9, 356359.2.0.CO;2>CrossRefGoogle Scholar
Paulick, H., Bach, W., Godard, M., De Hoog, J.C.M., Suhr, G. and Harvey, J. (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15º20’N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 234, 179210.CrossRefGoogle Scholar
Pechnikov, V.A. and Kaminsky, F.V. (2008) Diamond potential of metamorphic rocks in the Kokchetav Massif, northern Kazakhstan. European Journal of Mineralogy, 20, 395413.CrossRefGoogle Scholar
Pechnikov, V.A. and Kaminsky, F.V. (2011) Structural and microstructural regularities of the distribution of diamonds in metamorphic rocks of the Kumdy-Kol and Barchi-Kol deposits, Kokchetav Massif, northern Kazakhstan. The Canadian Mineralagist, 49, 673690.CrossRefGoogle Scholar
Pershin, S.V., Tsaplin, D.N., Dremin, A.N., Antipenko, A.G., Tkachenko, I.A. and Yukina, N.A. (1991) Possibility of the formation of diamonds as a result of the detonation of picric acid. Combustion, Explosion, and Shock Waves, 27, 496500.CrossRefGoogle Scholar
Pikovskii, Y.L., Chernova, T.G., Alekseeva, T.A. and Verkhovskaya, Z.I. (2004) Composition and nature of hydrocarbons in modern serpentinization areas in the ocean. Geochemistry International, 42, 971976.Google Scholar
Punturo, R. (1999) Caratterizzazione petrologica e petrofisica di xenoliti di origine profonda nelle tufo-brecce mioceniche della Valle Guffari (Altopiano Ibleo, Sicilia). Ph.D. Thesis, Università di Catania, Italy.Google Scholar
Rudenko, A.P., Kulakova, I.I. and Skvortsova, V.L. (1993) The chemical synthesis of diamond. Aspects of the general theory. Russian Chemical Reviews, 62, 87104.CrossRefGoogle Scholar
Sapienza, G., Hilton, D.R. and Scribano, V. (2005) Helium isotopes in peridotite mineral phases from Hyblean Plateau xenoliths (south-eastern Sicily, Italy). Chemical Geology, 219, 115129.CrossRefGoogle Scholar
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L.M. and Seifert, R. (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15ºN on the Mid- Atlantic Ridge: temporal and spatial investigation. Chemical Geology, 242, 121.CrossRefGoogle Scholar
Schrenk, M.O., Brazelton, W.J. and Lang, S.Q. (2013) Serpentinization, carbon, and deep life. Pp. 575606. in: Carbon in Earth (Hazen, R.M., Jones, A.P. and Baross, J.A., editors). Reviews in Mineralogy and Geochemistry, 75. Mineralogical Society of America and Geochemical Society, Washington, DC.CrossRefGoogle Scholar
Schroeder, T., John, B. and Frost, R.B. (2002) Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges. Geology, 30, 367370.2.0.CO;2>CrossRefGoogle Scholar
Scirè, S., Ciliberto, E., Crisafulli, C., Scribano, V., Bellatreccia, F. and Della Ventura, G. (2011) Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos, 125, 956968.CrossRefGoogle Scholar
Seyfried, W.E. Jr, Foustoukos, D.I. and Fu, Q. (2007) Redox evolution and mass transfer during serpentinization: an experimental and theoretical study at 200ºC, 500 bar with implications for ultramafichosted hydrothermal systems at Mid-Ocean Ridges. Geochimica et Cosmochimica Acta, 71, 38723886.CrossRefGoogle Scholar
Sharp, Z.D. and Barnes, J.D. (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth and Planetary Science Letters, 226, 243254.CrossRefGoogle Scholar
Silantyev, S.A., Mironenko, M.V. and Novoselov, A.A. (2009) Hydrothermal systems in peridotites of slowspreading mid-oceanic ridges. Modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell. Petrology, 17, 138157.CrossRefGoogle Scholar
Simakov, S.K. (2010a) Metastable nanosized diamond formation from a C-H-O fluid system. Journal of Materials Research, 25, 23362340.CrossRefGoogle Scholar
Simakov, S.K. (2010b) Perspectives of nanodiamond formation from the organic matter at low P-T parameters. Nature Precedings, doi:10.1038/ npre.2010.4924.1.CrossRefGoogle Scholar
Simakov, S.K., Dubinchuk, V.T., Novikov, M.P. and Drozdova, I.A. (2008) Formation of diamond and diamond-type phases from the carbon-bearing fluid at PT parameters corresponding to processes in the Earth’s crust. Doklady Earth Sciences, 421, 835837.CrossRefGoogle Scholar
Simakov, S.K., Dubinchuk, V.T., Novikov, M.P. and Drozdova, I.A. (2010) Metastable nanosized diamond formation from fluid phase. SRX Geosciences, doi: 10.3814/2010/504243.CrossRefGoogle Scholar
Szatmari, P. (1989) Petroleum formation by Fischer- Tropsch synthesis in plate tectonics. American Association of Petroleum Geologists Bulletin, 73, 989998.Google Scholar
Szymanski, A., Abgarowicz, E., Bakon, A., Niedbalska, A., Salacinski, R. and Sentek, J. (1995) Diamond formed at low pressures and temperatures through liquid-phase hydrothermal synthesis. Diamonds and Related Materials, 4, 234235.CrossRefGoogle Scholar
Taran, Y.A., Kliger, G.A. and Sevastianov, V.S. (2007) Carbon isotope effects in the open-system Fischer–Tropsch synthesis. Geochimica et Cosmochimica Acta, 71, 44744487.CrossRefGoogle Scholar
Tonarini, S., D’Orazio, M., Armienti, P., Innocenti, F. and Scribano, V. (1996) Geochemical features of eastern Sicily lithosphere as probed by Hyblean xenoliths and lavas. European Journal of Mineralogy, 8, 11531173.CrossRefGoogle Scholar
Treacy, D. and Ross, J.R.H. (2004) The potential of the CO2 reforming of CH4 as a method of CO2 mitigation. A thermodynamic study. Preprints of Papers – American Chemical Society, Division of Fuel Chemistry, 49, 126127.Google Scholar
van Thiel, M. and Ree, F.H. (1987) Properties of carbon clusters in TNT detonation products: graphitediamond transition. Journal of Applied Physics, 62, http://dx.doi.org/10.1063/1.339575.CrossRefGoogle Scholar
Wirth, R. and Rocholl, A. (2003) Nanocrystalline diamond from the Earth’s mantle underneath Hawaii. Earth and Planetary Science Letters, 211, 357369.CrossRefGoogle Scholar
Yaroshevskii, A.A. (2006) Possible geochemical conditions of local reducing environments in the earth’s crust and upper mantle. Geochemistry International, 44, 308309.CrossRefGoogle Scholar
Zhang, C. and Duan, Z. (2010) GFluid: an Excel spreadsheet for investigating C–O–H fluid composition under high temperatures and pressures. Computers and Geosciences, 36, 569572.CrossRefGoogle Scholar