Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-28T17:25:18.072Z Has data issue: false hasContentIssue false

The combined use of steam-treated bentonites and natural zeolites in the oenological refining process

Published online by Cambridge University Press:  02 January 2018

M. Mercurio*
Affiliation:
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini 59/A, 82100 Benevento, Italy
D. L. Bish
Affiliation:
Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA
P. Cappelletti
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
B. de Gennaro
Affiliation:
Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli, Federico II, P.le Tecchio 80, 80125 Naples, Italy
M. de Gennaro
Affiliation:
INNOVA SCaRL, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
C. Grifa
Affiliation:
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini 59/A, 82100 Benevento, Italy
F. Izzo
Affiliation:
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini 59/A, 82100 Benevento, Italy
V. Mercurio
Affiliation:
Winemaker, Salita Santa Croce 27, 80053 Castellammare di Stabia (Naples), Italy
V. Morra
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR), Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy
A. Langella
Affiliation:
Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via dei Mulini 59/A, 82100 Benevento, Italy

Abstract

Industrial minerals, particularly bentonites, have long been used in treatments to improve the stability and shelf life of white wines. We evaluated a new combination of rocks and minerals, including steam-treated bentonites and natural zeolites (chabazite and phillipsite), to greatly reduce the risk of protein and tartaric instability of wines. Detailed mineralogical, chemical and electrokinetic studies of these materials were conducted using powder X-ray diffraction (PXRD), X-ray fluorescence (XRF), microporosimetry, BET surface-area analysis and zeta-potential measurements. Several model wine solutions containing Bovine Serum Albumin (BSA) were prepared to evaluate the oenological performance of the rock/mineral combinations. UV-VIS spectrophotometry and ion chromatography were used to evaluate the degree of wine stabilization from the protein and tartaric point of view.

The experimental results showed that steam treatment modifies both the microporosity and external surface area of the bentonite. These changes in surface area, along with creation of hydrophobic surfaces, significantly modified the behaviour of the steam-treated bentonites, requiring an increase in the amount of material necessary to bring the protein content to required levels. An important benefit derived from the use of steam-treated bentonites is that the pre-mixing with water before addition to wine is not necessary, as the material is readily dispersed. Finally, the addition of natural zeolites effectively decreased the potassium content, thereby improving the tartaric stability of white wines. In addition, this procedure results in minimal waste, as the bentonite-zeolite mixture can be reused as soil amendments in agriculture.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achaerandio, I., Pachova, V, Giiell, C. and López, F. (2001) Protein adsorption by bentonite in a white wine model solution: effect of protein molecular weight and ethanol concentration. American Journal of Enology and Viticulture, 52, 122126. Google Scholar
Acquafredda, P., Andriani, T., Lorenzoni, S. andZanettin, E. (1999) Chemical characterization of obsidians from different Mediterranean sources by non-destructive SEM-EDS analytical method. Journal of Archaeological Science, 26, 315325 CrossRefGoogle Scholar
Ahonen, L., Korkeakoski, P., Tiljander, M., Kivikoski, H. and Laaksonen, R. (2008) Quality Assurance of the Bentonite Material. Posiva Working Report, POSIVA OY, Olkiluoto, Finland, 33 pp.Google Scholar
Aylmore, L.A.G.., Sills, I.D. and Quirk, J.P. (1970) Surface area of homoionic illite and montmorillonite clay minerals as measured by sorption of nitrogen and carbon dioxide. Clays and Clay Minerals, 18, 9196. CrossRefGoogle Scholar
Bayly, F.C. and Berg, H.W. (1967) Grape and wine proteins of white wine varietals. American Journal of Enology and Viticulture, 18, 1832 Google Scholar
Bish, D.L. and Post, J.E. (1993) Quantitative mineral-ogical analysis using the Rietveld full pattern fitting method. American Mineralogist, 78, 932940. Google Scholar
Bish, D.L. and Von Dreele, R.B. (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays and Clay Minerals, 37, 289296. CrossRefGoogle Scholar
Bish, D.L., Wu, W., Carey, J.W., Costanzo, P., Giese, R.F. Jr., Earl, W. and van Oss, C.J. (1999) Effects of steam on the surface properties of Na-smectite. Pp. 569575 in: Clays for Our Future, Proceedings of the 11th Annual International Clay Conferenc. (H. Kodama, A. Mermut and J.K. Torrance, editors). Ottawa, Canada.Google Scholar
Blade, W.H. and Boulton, R. (1988) Adsorption of protein by bentonite in a model wine solution. American Journal of Enology and Viticulture, 39, 193199 Google Scholar
Cappelletti, P., Langella, A. and Cruciani, G. (1999) Crystal-chemistry and synchrotron Rietveld refine-ment of two different clinoptilolites from volcano-clastites of North-Western Sardinia. European Journal of Mineralogy, 11,10511060 CrossRefGoogle Scholar
Cases, J.M., Berend, I., Besson, G., Francois, M., Uriot, I P., Thomas, F. and Poirier, J.E. (1992) Mechanism of adsorption and desorption of water-vapor by homo-ionic montmorillonite. 1. The sodium-exchanged form. Langmuir, 8, 27302739. Google Scholar
Catarino, S., Madeira, M., Monteiro, F., Rocha, F., Curvelo-Garcia, A.S. and Bruno de Sousa, R. (2008) Effect of bentonite characteristics on the elemental composition of wine. Journal of Agricultural and Food Chemistry, 56, 158165. CrossRefGoogle ScholarPubMed
Cerri, G., Cappelletti, P., Langella, A. and de Gennaro, M.(2001) Zeolitization of Oligo–Miocene volcaniclastic rocks from Logudoro(northern Sardinia, Italy). Contributions to Mineralogy and Petrology,, 140,404421.CrossRefGoogle Scholar
Cerri, G., Langella, A., Pansini, M. and Cappelletti, P. (2002) Methods of determining cation exchange capacities for clinoptilolite-rich rocks of the Logudoro region in northern Sardinia, Italy. Clays and Clay Minerals, 50, 127135. CrossRefGoogle Scholar
Christidis, G.E. (2006) Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks - A case study from the Troodos Ophiolite Complex, Cyprus. American Mineralogist, 91, 685701. CrossRefGoogle Scholar
Christidis, G.E. and Makri, P. (2007) Distribution layer charge and charge distribution of smectites in bentonite deposits: implication for bentonite genesis. Euroclay ‘07. Aveiro, Portugal, Abstracts.Google Scholar
Couture, R.A. (1985) Steam rapidly reduces the swelling capacity of bentonite. Nature, 318, 50.CrossRefGoogle Scholar
Cronstedt, A. (1758) Smectites. In: An Essay Toward a System of Mineralogy. English translation of Försök Till Mineralogie, Eller Mineral Rikets Upställning by J.H Hyacinth. Magellan, London.Google Scholar
Damour, A. and Salvetat, D. (1847) Analyses sur un hydrosilicate d'alumine trouvé à Montmorillon. Annales de chimie et de physique, 3, 376383. Google Scholar
Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: appli¬cation of the March model. Journal of Applied Crystallography, 19, 267272. CrossRefGoogle Scholar
Dollimore, D., Spooner, P. and Turner, A. (1976) The BET method of analysis of gas adsorption data and its relevance to the calculation of surface area. Surface Technology, 4, 121160. CrossRefGoogle Scholar
Downs, R.T. and Palmer, D.C. (1994) The pressure behavior of alpha cristobalite. American Mineralogist, 79, 914. Google Scholar
Eisenhour, D.D. and Brown, R.K. (2009) Bentonite and its impact on modern life. Elements, 5, 8388 CrossRefGoogle Scholar
Franzini, M., Leoni, L. and Saitta, M. (1972) A simple method to evaluate the matrix effects in X-ray fluorescence analysis. X-Ray Spectrometry, 1, 151154. CrossRefGoogle Scholar
Gregg, S.J. and Sing K.S.W. (1982) Adsorption, Surface Area, and Porosity.Academic Press, London and New York, 303 pp.Google Scholar
Güven, N. (2009) Bentonite-clays for molecular engin¬eering. Elements, 5, 8992 CrossRefGoogle Scholar
Hayasaka, Y., Adams, K.S., Popock, K.F., Baldock, G.A., Waters, E.J. and Høj, P.B. (2001) Use of electrospray mass spectrometry for mass determination of grape (Vitis vinifera) juice pathogenesis related proteins: A potential tool for varietal differentiation. Journal of Agricultural and Food Chemistry, 49, 18301839. CrossRefGoogle ScholarPubMed
Heuser, M., Weber, C., Stanjek, H., Chen, H., Jordan, G., Schmahl, W.W. andNatzeck, C. (2014) The interaction between bentonite and water vapor. I: Examination of physical and chemical properties. Clays and Clay Minerals, 62, 188202. CrossRefGoogle Scholar
ICSD [Inorganic Crystal Structure Database] (2014) FIZ Karlsruhe, Germany and NIST, US, PC Version 2014/1Google Scholar
Karnland, O., Olsson, S. and Nilsson, U. (2006) Mineralogy and sealing properties of various bento-nites and smectite-rich clay materials. Clay Technology AB, SKB Technical Report TR-06-30. Stockholm, Sweden.Google Scholar
Knight, K.S., Stretton, I.C. and Schofield, P.F. (1999) Temperature evolution between 50 K and 320 K of the thermal expansion tensor of gypsum derived from neutron powder diffraction data. Physics and Chemistry of Minerals, 26, 477483. CrossRefGoogle Scholar
Knight, W.C. (1898) Bentonite. Engineering & Mining Journal, 66, 491.Google Scholar
Lambri, M., Dordoni, R., Silva, A. and De Faveri, D.M. (2010) Effect of bentonite fining on odor active compounds in two different white wine styles. American Journal of Enology and Viticulture, 61, 225233. Google Scholar
Langella, A., Bish, D.L., Cappelletti, P., Cerri, G., Colella, A., de Gennaro, R., Graziano, S.F., Perrotta, A., Scarpati, C. and de Gennaro, M. (2013) New insights into the mineralogical facies distribution of Campanian Ignimbrite, a relevant Italian industrial material. Applied Clay Science, 72, 5573. CrossRefGoogle Scholar
Le Page, Y and Donnay, G. (1976) Refinement of the crystal structure of low-quartz. Acta Crystallographica Section B: Structural Science, 32, 24562459. CrossRefGoogle Scholar
Marchal, R. (2010) New directions in stabilization, clarification and fining of white wines. Pp. 188-225 in: Managing wine quality: oenology and wine qualit. (A.G. Reynolds, editor). Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing Limited, Great Abington, Cambridge, UK.Google Scholar
Mercurio, M., Mercurio, V., de Gennaro, B., de Gennaro, M., Grifa, C., Langella, A. and Morra, Y (2010) Natural zeolites and white wines from Campania region (Southern Italy): a new contribution for solving some oenological problems. Periodico di Mineralogia, 79, 95112 Google Scholar
Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., Grifa, C., Buondonno, A. and Langella, A. (2014) A ‘Geo-Pedo-Fingerprint’ (GPF) as a tracer to detect univocal parent material-to-wine production chain in high quality vineyard districts, Campi Flegrei (Southern Italy). Geoderma, 230-231,6478.CrossRefGoogle Scholar
Mesquita, P.R., Piçarra-Pereira, M.A., Monteiro, S., Loureiro, V.B., Teixeira, A.R. and Ferreira, R.B. (2001) Effect of wine composition on protein stability. American Journal ofEnology and Viticulture, 52, 324330. Google Scholar
Meunier, A., Lanson, B. and Velde, B. (2004) Composition variation of illite-vermiculite-smectite mixed-layer minerals in a bentonite bed from Charente (France). Clay Minerals, 39, 317332. CrossRefGoogle Scholar
Ming, D.W. and Allen, E.R. (2001) Use of natural zeolites in agronomy, horticulture, and environmental soil remediation. Pp. 619-649 in: Natural Zeolites, Occurrence, Properties, Application. (D.L. Bish and D.W. Ming, editors). Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Chatilly, Virginia, USA.Google Scholar
Moio, L. and Addeo, F. (1989) Focalizzazione isoelettrica delle proteine dei mosti e dei vini. VigneVini, 4, 5357. Google Scholar
Moretti, R.H. and Berg, H.W. (1965) Variability among wines to protein clouding. American Journal of Enology and Viticulture, 16, 6978 Google Scholar
Neaman, A., Pelletier, M. and Villieras, F. (2003) The effects of exchanged cation, compression, heating and hydration on textural properties of bulk bentonite and its corresponding purified montmorillonite. Applied Clay Science, 22, 153-168.CrossRefGoogle Scholar
OIV [Organization Internationale de la Vigne et du Vin] (2003) Bentonites. Resolution OENO 11/2003, Office International de la Vigne et du Vin, 7 pp.Google Scholar
Oscarson, D.W. and Dixon, D.A. (1989) The effect of steam on montmorillonite. Applied Clay Science, 4, 279292 CrossRefGoogle Scholar
Oscarson, D.W., Hume, H.B. and King, F. (1994) Sorption of cesium on compacted bentonite. Clays and Clay Minerals, 42, 731736. CrossRefGoogle Scholar
Peacor, D.R. (1973) High-temperature single-crystal study of the cristobalite inversion. Zeitschrift für Kristallographie, 138,274298.CrossRefGoogle Scholar
Phillips, M.W. and Ribbe, P.H. (1973) The structures of monoclinic potassium-rich feldspars. American. Mineralogist, 58, 263270. Google Scholar
Prewitt, C.T., Sueno, S. and Papike, 11 (1976) The crystal structures of high albite and monalbite at high temperatures. American Mineralogist, 61, 12131225. Google Scholar
Quirk, IP and Aylmore, L.A.G.. (1971) Domains and quasi-crystalline regions in clay systems. Soil Science Society of America Journal, 35, 652654..CrossRefGoogle Scholar
Ribéreau-Gayon, P., Glories, Y., Maujean, A. and Dubordieu, D. (2006) Handbook ofEnology, Volume 2, The chemistry of wine stabilization and treatments. 2nd Edition. John Wiley & Sons Ltd, Chichester, England.CrossRefGoogle Scholar
Rutherford, D.W. Chiou, C.T. and Eberl, D.D. (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clays and Clay Minerals, 45, 534543. CrossRefGoogle Scholar
Sarmento, M.R., Oliveira, J.C. and Boulton, R.B. (2000) Selection of low swelling materials for protein adsorption from white wines. The International Journal of Food Science and Technology, 35, 447. CrossRefGoogle Scholar
Saywell, L.G. (1934) Clarification of wine. Journal of Industrial and Engineering Chemistry, 26, 981982.CrossRefGoogle Scholar
Sing, K.S.W.. and Williams, R.T. (2005) Empirical procedures for the analysis of physisorption isotherms. Adsorption Science & Technology, 23, 839853.CrossRefGoogle Scholar
Takeda, H. and Ross, M. (1975) Mica polytypism: dissimilarities in the crystal structures of coexisting 1M and 2M1 biotite. American Mineralogist, 60, 10301040..Google Scholar
Tessier, D. (1984) Etude expérimentale de Vorganisation des matériaux argilleux.These University of Paris VII, INRAVersailles PuB., France, 360 pp..Google Scholar
Touret, O., Pons, C.H., Tessier, D. and Tardy, Y (1990) Study on distribution of water in saturated Mg2+ clays with high water content. Clay Minerals, 25, 217233.CrossRefGoogle Scholar
Waters, E.J., Shirley, N.J. and Williams, P.J. (1996) Nuisance proteins of wine are grape pathogenesis related proteins. Journal of Agricultural and Food Chemistry, 44, 35. CrossRefGoogle Scholar
Waters, E.J., Hayasaka, Y., Tattersall, D.B., Adams, K.S. and Williams, P.J. (1998) Sequence analysis of grape (Vitis vinifera) berry chitinases that cause haze formation in wines.. Journal of Agricultural and Food Chemistry, 46, 49504957. CrossRefGoogle Scholar
Wyss, C. and Cuénat, P. (2005) Stabilisation tartrique des vins par traitement aux zéolites. Revue suisse de Viticulture, Arboriculture, Horticulture, 37, 341347 Google Scholar
Zhu, L. (2009) An integrated study of steam-induced property changes of clay minerals.PhD Thesis, Indiana University, USA, 317 pp.Google Scholar