Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T23:11:30.862Z Has data issue: false hasContentIssue false

Continuity in the monazite-huttonite series

Published online by Cambridge University Press:  05 July 2018

Henryk Kucha*
Affiliation:
Institute of Geology and Mineral Deposits, 30-059 Kraków, Av. Mickiewicza 30, Poland

Summary

Electron diffraction and electron-microprobe investigations have revealed the presence of order in the monazite-huttonite series. Chemical analyses from the literature and electron-microprobe analyses in this study show that the monazite-huttonite series, REPO4-ThSiO4, is only continuous if the contribution of F, M2+, and OH to the charge balance is taken into account. The electron-diffraction study points to ordered domain structures in the series.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, (K. W.), Dyson, (D. J.) and Keown, (S. R.), 1967. Interpretation of electron diffraction patterns. Helger and Watts Ltd, London. 188 pp.CrossRefGoogle Scholar
Banaś, (M.) and Kucha, (H.), 1975. Niobium-bearing rutile, ilmenorutile and iron mossite from pegmatites of the marginal zone of the Lu#yce Granitoids. Mineral. Pol. 6, 3–13.Google Scholar
Bowie, (S. H. U.) and Horne, (J. E. T.), 1953. Cheralite, a new mineral of the monazite group. Mineral. Mag. 30, 93–9.Google Scholar
Bowles, (J. F. W.), Jobbins, (E. A.), and Young, (B. R.), 1980. A re-examination of cheralite. Mineral. Mag. 43, 885–8.CrossRefGoogle Scholar
Frondel, (C.), 1958. Systematic mineralogy of uranium and thorium. U.S. Govt. Print. Off., Washington D.C. 400 pp.Google Scholar
Kucha, (H.), 1979. Fe2+Th[PO4]2 monoclinic, Fe2+Th [PO4]2.H2O hexagonal, Fe1–x 2+Thl–x,(RE,Fe3+)2x [PO412.I-3H2O orthorhombic and Fe3 2+(H2O) [PO4]2 monoclinic—four new minerals from Poland. Mineral. Pol. In press.Google Scholar
Murata, (K. J.), Rose, (H. J.), and Carron, (M. K.), 1953. Systematic variation of rare earth in monazite. Geo-chim. Cosmochim. Acta, 4, 292–300.CrossRefGoogle Scholar
Pabst, (A.), 1951. Huttonite, a new monoclinic thorium silicate. Am. Mineral. 36, 60–9, including C. O. Hutton, with an account of its occurrence, analysis, and properties.Google Scholar
Philibert, (J.) and Tixier, (R.), 1968. Electron penetration and the atomic number correction in electron microprobe analysis. Brit. J. Appl. Phys. (J. Phys. D),ser. 2, 1, 685–94.CrossRefGoogle Scholar
Reed, (S. J. B.), 1965. Characteristic fluorescence corrections in electron probe microanaly∼is. Brit. J. Appl. Phys. 16, 913.CrossRefGoogle Scholar
Starynkevitch, (I.), 1922. The chemical formula of monazite and several analyses of Russian monazites (in Russian). Acad. sci. U.R.S.S., comptes rendus, 31, 28–30.Google Scholar
Wylie, (A. W.), 1948. Constitution of monazite. Nature, 161, 97.CrossRefGoogle Scholar