Skip to main content
×
×
Home

Crystal structure determination of karibibite, an Fe3+ arsenite, using electron diffraction tomography

  • Fernando Colombo (a1), Enrico Mugnaioli (a2) (a3), Oriol Vallcorba (a4), Alberto García (a1), Alejandro R. Goñi (a1) (a5) and Jordi Rius (a1)...
Abstract

The crystal structure of karibibite, Fe3 3+(As3+O2)4(As2 3+O5)(OH), from the Urucum mine (Minas Gerais, Brazil), was solved and refined from electron diffraction tomography data [R 1 = 18.8% for F > 4σ(F)] and further confirmed by synchrotron X-ray diffraction and density functional theory (DFT) calculations. The mineral is orthorhombic, space group Pnma and unit-cell parameters (synchrotron X-ray diffraction) are a = 7.2558(3), b = 27.992(1), c = 6.5243 (3) Å, V = 1325.10(8) Å3, Z = 4. The crystal structure of karibibbite consists of bands of Fe3+O6 octahedra running along a framed by two chains of AsO3 trigonal pyramids at each side, and along c by As2O5 dimers above and below. Each band is composed of ribbons of three edge-sharing Fe3+O6 octahedra, apex-connected with other ribbons in order to form a kinked band running along a. The atoms As(2) and As(3), each showing trigonal pyramidal coordination by O, share the O(4) atom to form a dimer. In turn, dimers are connected by the O(3) atoms, defining a zig-zag chain of overall (As3+O2) n -n stoichiometry. Each ribbon of (Fe3+O6) octahedra is flanked on both edges by the (As3+O2) n -n chains. The simultaneous presence of arsenite chains and dimers is previously unknown in compounds with As3+. The lone-electron pairs (4s2) of the As(2) and As(3) atoms project into the interlayer located at y = 0 and y = ½, yielding probable weak interactions with the O atoms of the facing (AsO2) chain.

The DFT calculations show that the Fe atoms have maximum spin polarization, consistent with the Fe3+ state.

Copyright
Corresponding author
*E-mail: fosfatos@yahoo.com.ar
Footnotes
Hide All
§

Permanent address: CICTERRA-CONICET. FCEFyN – Universidad Nacional de Córdoba. Av. Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina

Footnotes
References
Hide All
Allmann, R. (1975) Beziehungen zwischen Bindungslängen und Bindungsstärken in Oxidstrukturen. Monatshefte für Chemie, 106, 779793.
Araki, T., Moore, P.B. and Brunton, G.D. (1980) The crystal structure of paulmooreite, Pb2[As2O5]; dimeric arsenite groups. American Mineralogist, 65, 340345.
Bérar, J.-F. and Lelann, P. (1991) E.S.D.s and estimated probable error obtained in Rietveld refinements with local correlations. Journal of Applied Crystallography, 24, 15.
Bowell, R.B., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J. (2014) The environmental geochemistry of arsenic: an overview. Pp. 116 in: Arsenic: Environmental Geochemistry, Mineralogy and Microbiology (Bowell, R.B., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America, Chantilly, Virginia, USA.
Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. and Polidori, G. (2015) Crystal structure determination and refinement via SIR2014. Journal of Applied Crystallography, 48, 306309.
Calvo, M. (2015) Minerales y Minas de España. Volumen VII. Fosfatos, Arseniatos y Vanadatos. Escuela Técnica Superior de Ingenieros de Minas de Madrid, Fundación Gómez Pardo.
Capitani, G.C., Mugnaioli, E., Rius, J., Gentile, P., Catelani, T., Lucotti, A. and Kolb, U. (2014) The Bi sulfates from the Alfenza Mine, Crodo, Italy: an automatic electron diffraction tomography (ADT) study. American Mineralogist, 99, 500510.
Craw, D. and Bowell, R.J. (2014) The characterization of arsenic in mine waste. Pp. 473506 in: Arsenic: Environmental Geochemistry, Mineralogy and Microbiology (Bowell, R.B., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America, Chantilly, Virginia, USA.
Doyle, P.A. and Turner, P.S. (1968) Relativistic Hartree- Fock X-ray and electron scattering factors. Acta Crystallographica, A24, 390397.
Favreau, G. and Dietrich, J. E. (2006) Die Mineralien von Bou Azzer. Lapis, 31, 2768.
Ghose, S., Sen Gupta, P.K. and Schlemper, E.O. (1987) Leiteite, ZnAs2O4: a novel type of tetrahedral layer structure with arsenite chains. American Mineralogist, 72, 629632.
Graeser, S., Schwander, H., Demartin, F., Gramaccioli, C. M., Pilati, T. and Reusser, E. (1994) Fetiasite (Fe2+, Fe3+, Ti)3O2[As2O5], a new arsenite mineral: its description and crystal structure determination. American Mineralogist, 79, 9961002.
Hawthorne, F.C. (1976) The hydrogen positions in scorodite. Acta Crystallographica, B32, 28912892.
Hawthorne, F.C. (1985) Schneiderhöhnite, Fe2+ Fe3 3+ As5 3+O13, a densely packed arsenite structure. The Canadian Mineralogist, 23, 675679.
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Nash, B.P., Dini, M. and Jenkins, R.A. (2013) Joteite, Ca2CuAl[AsO4][AsO3(OH)]2(OH)2·5H2O, a new arsenate with a sheet structure and unconnected acid arsenate groups. Mineralogical Magazine, 77, 28112823.
Kaur, N., Singh, B., Kennedy, B.J. and Gräfe, M. (2009) The preparation and characterization of vanadiumsubstituted goethite: the importance of temperature. Geochimica et Cosmochimica Acta, 73, 582593.
Klaska, R. and Gebert, W. (1982) Polytypie und Struktur von Gebhardit – Pb8 OCl6(As2O5)2 . Zeitschrift für Kristallographie, 159, 7576.
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: Part I – data acquisition. Ultramicroscopy, 107, 507513.
Larsen, A.O. (2013) Contributions to the mineralogy of the syenite pegmatites in the Larvik Plutonic Complex. Norsk Bergverksmuseum Skrift, 50, 101109.
Lutz, H.D., Jung, M. and Waeschenbach, G. (1987) Kristallstrukturen des Löllingits FeAs2 und des Pyrits RuTe2 . Zeitschrift für Anorganische und Allgemeine Chemie, 554, 8791.
Majzlan, J., Palatinus, L. and Plášil, J. (2016) Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kaňkite. European Journal of Mineralogy, 28, 6370.
Mitchell, V.L. (2014) Health risks associated with chronic exposures to arsenic in the environment. Pp. 435450 in: Arsenic: Environmental Geochemistry, Mineralogy and Microbiology (Bowell, R.B., Alpers, C.N., Jamieson, H.E., Nordstrom, D.K. and Majzlan, J., editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America, Chantilly, Virginia, USA.
Mugnaioli, E. (2015a) Single nano crystal analysis using automated electron diffraction tomography. Rendiconti Fisici dell’Accademia dei Lincei, 26, 211223.
Mugnaioli, E. (2015b) Closing the gap between electron and X-ray crystallography. Acta Crystallographica, B71, 737–739.
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy, 109, 758765.
Norby, P. (1997) Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement. Journal of Applied Crystallography, 30, 2130.
O’Day, P. (2006) Chemistry and mineralogy of arsenic. Elements, 2, 7783.
Ohnishi, M., Shimobayashi, N., Kishi, S., Tanabe, M. and Kobayashi, S. (2013) Talmessite from the Uriya deposit at the Kiura mining area, Oita Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 108, 116120.
Ondruš, P., Skála, R., Císařova, I. ,Veselovský, F., Frýda, J. and Čejka, J. (2002) Description and crystal structure of vajdakite, [(Mo6+O2)2(H2O)2As2 3+ O5]·H2O – a new mineral from Jáchymov, Czech Republic. American Mineralogist, 87, 983990.
Pertlik, F. (1975) Verfeinerung der Kristallstrucktur von synthetischem Trippkeit, CuAs2O4 . Tschermaks mineralogische und petrographische Mitteilungen, 22, 211217.
Rius, J. (2012) Patterson function and delta-recycling: derivation of the phasing equations. Acta Crystallographica, A68, 399400. Software downloaded from http://departments.icmab.es/crystallography/software/XLENS_P5
Rius, J. and Plana, F. (1982) Una nueva función que relaciona la longitud del enlace iónico con la valencia electrostática del catión. Anales de Química, 80, 147149.
Rodríguez-Carvajal, J. (2001) Recent developments of the program FULLPROF. Commission on Powder Diffraction (IUCr) Newsletter, 26, 1219.
Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U., Reinholdt, A. and Weirich, T. (2010) The structure of charoite, (K,Sr,Ba,Mn)15-16 (Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, solved by conventional and automated electron diffraction. Mineralogical Magazine, 74, 159177.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P. and Sánchez-Portal, D. (2002) The SIESTA method for ab initio order-N materials simulation. Journal of Physics:CondensedMatter, 14, 27452779.
Vaughan, D.J. (2006) Arsenic. Elements, 2, 7175.
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271282.
Voloshin, A.V., Pakhomovsky, Y.A. and Bakhchisaraitsev, A.Y. (1989) On karibibite and schneiderhöhnite from pegmatites of Eastern Kazakhstan. Novye Dannye o Mineralakh, 36, 129135 [in Rusian].
von Knorring, O., Sahama, T.G. and Rehtijärvi, P. (1973) Karibibite, a new FeAs mineral from South West Africa. Lithos, 6, 265272.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mineralogical Magazine
  • ISSN: 0026-461X
  • EISSN: 1471-8022
  • URL: /core/journals/mineralogical-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed