Skip to main content Accessibility help

Crystal structures of synthetic 7 Å and 10 Å manganates substituted by mono- and divalent cations

  • Kenshi Kuma (a1), Akira Usui (a2), William Paplawsky (a3), Benjamin Gedulin (a3) and Gustaf Arrhenius (a3)...


The crystal structures of synthetic 7 Å and 10 Å manganates, synthetic birnessite and buserite, substituted by mono- and divalent cations were investigated by X-ray and electron diffractions. The monoclinic unit cell parameters of the subcell of lithium 7 Å manganate, which is one of the best ordered manganates, were obtained by computing the X-ray powder diffraction data: a = 5.152 Å, b = 2.845 Å, c = 7.196 Å, β = 103.08°. On the basis of the indices obtained by computing the X-ray diffraction data of Li 7 Å manganate, monovalent Na, K and Cs and divalent Be, Sr and Ba 7 Å manganates were interpreted as the same monoclinic structure with β = 100–103° as that of Li 7 Å manganate, from their X-ray diffraction data. In addition, divalent Mg, Ca and Ni 10 Å manganates were also interpreted as the same monoclinic crystal system with β = 90–94° The unit cell parameters, especially a, c and β, change possibly with the type of substituent cation probably because of the different ionic radius, hydration energy and molar ratio of substituent cation to manganese. However, these diffraction data, except for those of Sr and Ba 7 Å and Ca and Ni 10 Å manganates, reveal only some parts of the host manganese structure with the edge-shared [MnO6] octahedral layer. On the other hand, one of the superlattice reflections observed in the electron diffractions was found in the X-ray diffraction lines for heavier divalent cations Sr and Ba 7 Å and Ca and Ni 10 Å manganates. The reflection presumably results from the substituent cation position in the interlayer which is associated with the vacancies in the edge-shared [MnO6] layer and indicates that the essential vacancies are linearly arranged parallel to the b-axis. Furthermore, the characteristic superlattice reflection patterns for several cations, Li, Mg, Ca, Sr, Ba and Ni, manganates were interpreted that the substituent cations are regularly distributed in the interlayer according to the exchange percentage of substituent cation to Na+. In contrast, the streaking in the a-direction observed strongly in the electron diffractions for heavier monovalent cations, K and Cs, manganates probably results from the disordering of their cations in the a-direction in the interlayer.



Hide All
Ahrens, L. H. (1952) The use of ionization potentials. Part 1. ionic radii of the elements. Geochim. Cosmochim. Acta, 2, 155–69.
Arrhenius, G. and Tsai, A. G. (1981) Structure, phase transformation and prebiotic catalysis in marine manganate minerals. Scripps Inst. Oceanogr. Ref. Ser., 81, 1–19.
Arrhenius, G., Cheung, K. Crane, S., Fisk, M., Frazer, J., Korkisch, J., Mellin, T., Nakao, S., Tsai, A., and Wolf, G. (1979) Counterions in marine manganates. In La Genise des Nodules de Manganese, (Lalou, C., ed.), Colloq. Int. C. N. R. S., 289, 333–56.
Beeston, B. E. P., Home, R. W. and Markham, R. (1972) Electron diffraction and optical diffraction techniques. In Practical Methods in Electron Microscopy, (A. M. Glauert, ed.), Vol. 1, Part II, North-Holland/Elsevier, New York, 444 pp.
Burns, R. G. and Burns, V. M. (1977) The mineralogy and crystal chemistry of deep-sea manganese nodules, a polymetallic resource of the twenty-first century. Phil. Trans. R. Soc. Lond. A., 286, 283–301.
Burns, R. G. and Burns, V. M. (1979) Manganese oxides. In Marine Minerals, (R. G. Burns, ed.), Short Course Notes, Vol. 6, Miner. Soc. Amer., Washington, D. C, pp. 1-46.
Burns, R. G. and Burns, V. M. (1981) Authigenic oxides. In The Sea, VoL 7: The Oceanic Litho-sphere, (C. Emiliani, ed.), John Wiley, New York, pp. 875-914.
Burns, V. M. and Burns, R. G. (1978) Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth Planet. Sci. Lett., 39, 341–8.
Buser, W. and Graf, P. (1955a) Radiochemische Untersuchungen an Festkorpern, III. Ionen-und Isotopenaustauschreaktionen an Mangandioxy-den und Manganiten. Helv. Chim. Acta, 38, 810–29.
Buser, W. and Graf, P. (19556) Differenzierung von Mangan (II) manganit und S-MnO2 durch Oberflachenmessung nach Brunauer-Emmett-Teller. Helv. Chim. Acta, 38, 830–4.
Buser, W. and Griitter, A. (1956) Uber die Nature der Manganknollen. Schweiz Mineral Petrogr. Mitt., 36, 49–62.
Chukhrov, F. V., Gorshkov, A. I., Rudnitskaya, E. S. and Sivtsov, A. V. (1978) The characteristics of birnessite. Izvest. Akad. Nauk SSSR, ser. geol., no. 9, 67–76.
Chukhrov, F. V., Gorshkov, A. I., Sivtsov, A. V. and Berezovskaya, V. V. (1979a) A new 14 A mineral of the birnessite group in deep-sea micronodules. Nature, 280, 136–7.
Chukhrov, F. V., Gorshkov, A. I., Sivtsov, A. V. and Berezovskaya, V. V. (19796) New mineral phases of oceanic manganese microconcretions. Izvest. Akad. Nauk SSSR,, ser. geol., no. 1, 83–90.
Chukhrov, F. V., Gorshkov, A. I., Vitovskaya, I. V., Drits, V. A., Sivtsov, A. I. and Rudnitskaya, Ye. S. (1980) Crystallochemical nature of Co-Ni asbolan. AN SSSR Izvestiya, ser. geol., no. 6, 73–81.
Chukhrov, F. V., Gorshkov, A. I., Vitovskaya, I. V., Drits, V. A., Sivtsov, A. I. and Rudnitskaya, Ye. S. (Trans. Intemat. Geol. Rev., 24, 598-604.
Corliss, J. B., Lyle, M., Dymond, J. and Crane, K. (1978) The chemistry of hydrothermal mounds near the Galapagos rift. Earth Planet. Sci. Lett., 40, 12–24.
Crane, S. E. (1981) Structural chemistry of the marine manganate minerals. Ph.D. thesis (unpubl.), University of California, San Diego, 296 pp.
Cronan, D. S., Glasby, G. P., Moorby, S. A., Thomson, J., Knedler, K. E. and McDougall, J. C. (1982) A submarine hydrothermal manganese deposit from the south-west Pacific island arc. Nature, 298, 456–8.
Cullity, B. D. (1978) Elements of X-ray diffraction, 2nd ed., Addison-Wesley, 555 pp.
Feitknecht, W. and Marti, W. (1945) Uber die Oxydation von Mangan(Il) hydroxid mit moleku-larem Sauerstoff. Heh. Chim. Ada, 28, 129–56.
Giovanoli, R. (1980) On natural and synthetic manganese nodules. In Geology and Geochemistry of Manganese, (I. M. Varentsov and Gy. Grass-elly, eds.), Akad. Kiado, Budapest, Vol. 1, pp. 159-202.
Giovanoli, R. and Briitsch, R. (1979) Uber die Oxidhydroxide des Mn(IV) mit Schichtengitter. 5 Mitteilung: Stochiometrie, Austauschverhalten und die Rolle bei der Bindung von Tiesee-Mangankonkretionen. Chimia, 33, 372–6.
Giovanoli, R. and Biirki, P. (1975) Comparison of x-ray evidence of marine manganese nodules and non-marine manganese ore deposits. Chimia, 29, 266–9.
Giovanoli, R., Stahli, E. and Feitknecht, W. (1970a) Uber Oxidhydroxide des vierwertigen Mangans mit Schichtengitter. 1. Natrium-mangan 11,111) manganat (IV). Heh. Chim. Ada, 53, 209–20.
Giovanoli, R., Stahli, E. and Feitknecht, W. (19706) Uber Oxihydroxide des vierwertigen Mangans mit Schichtengitter. 2. Mangan (II)-Manganat (IV). Heh. Chim. Acta, 53, 453–64.
Giovanoli, R., Biihler, H. and Sokolowska, K. (1973) Synthetic lithiophorite: electron microscopy and x-ray diffraction. J. Microsc, 18, 271–84.
Giovanoli, R., Biirki, P., Giuffredi, S. and Stumm, W. (1975) Layer structured manganese oxide hydroxides. IV: The buserite group; structure stabilization of transition elements. Chimia, 29, 517–20.
Glasby, G. P. (1972) The mineralogy of manganese nodules from a range of marine environments. Mar. Geol, 13, 57–72.
Hariya, Y. (1980) On the geochemistry and formation of manganese dioxide deposits. In Geology and Geochemistry of Manganese (I. M. Varentsov and Gy. Grasselly, eds.), Akad. Kiado, Budapest, Vol. 1, pp. 353-66.
Manceau, A., Llorca, S. and Calas, G. (1987) Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim. Cosmo-chim. Acta, 51, 105–13.
McKenzie, R. M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydro-xides of manganese. Mineral. Mag., 28, 493–503.
Mellin, T. (1981) Structural chemistry of synthetic manganate and iron compounds: implication for geochemistry of marine ferromanganese deposits. Ph.D. thesis (unpubl.), University of Goteborg, Goteborg, 237 pp.
Moore, W. S. and Vogt, P. R. (1976) Hydrothermal manganese crusts from two sites near the Galapagos spreading axis. Earth Planet. Sci. Lett., 29, 349–56.
Post, J. E. and Veblen, D. R. (1990) Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Amer. Mineral, 75, 477–89.
Potter, R. M. and Rossman, G. R. (1979) The tetravalent manganese oxides: identification, hy-dration, and structural relationships by infrared spectroscopy. Amer. Mineral, 64, 1199–218.
Rosseinsky, D. R. (1965) Electrode potentials and hydration theories and correlations. Chem. Rev., 65, 467–90.
Shannon, R. D. and Prewitt, C. T. (1969) Effective ionic radii in oxides and fluorides. Acta. Crystal-logr., B25, 925–46.
Stouff, P. and Boulegue, J. (1988) Synthetic 10-A and 7-A phyllomanganates: their structures as determined by EXAFS. Amer. Mineral, 73, 1162–9.
Stouff, P. and Boulegue, J. (1989) Geochemistry and crystallochemistry of oceanic hydrothermal man-ganese oxyhydroxides showing Mn-Cu associa-tion. Geochim. Cosmochim. Acta, 53, 833–43.
Tejedor-Tejedor, M. I. and Paterson, E. (1978) Reversibility of lattice collapse in synthetic buserite. Int. Clay Conf, 27, 501–8.
Turner, S., Siegel, M. D. and Buseck, P. R. (1982) Structural features of todorokite intergrowths in manganese nodules. Nature, 296, 841–3.
Usui, A. (1979) Mineralogical study of marine manganese nodules, synthesis of hydrous manga-nese oxides, and their implication to the genesis and geochemistry. Ph.D. thesis (unpubl.), University of Tokyo, Tokyo, 175 pp.
Usui, A. and Nishimura, A. (1992) Submersible observations of hydrothermal manganese deposits on the Kaikata seamount, Izu-Ogasawara (Bonin) arc. Mar. Geol., 106, 203–16.
Usui, A., Takenouchi, S. and Shoji, T. (1978) Mineralogy of deep sea manganese nodules and synthesis of manganese oxides: implication to genesis and geochemistry. Mining Geol., 28, 405–20. (In Japanese with English abstr.).
Usui, A., Melline, T. A., Nohara, M. and Yuasa, M. (1989) Structural stability of marine 10 A manganates from the Ogasawara (Bonin) Arc: Implication for low-temperature hydrothermal activity. Mar. Geol., 86, 41–56.
Visser, J. W. (1969) A fully automatic program for finding the unit cell from powder data. Appl. Cryst., 2, 89–95.
Wadsley, A. D. (1950a) A hydrous manganese oxide with exchange properties. J. Amer. Chem. Soc., 72, 1782–4.
Wadsley, A. D. (1950b) Synthesis of some hydrated manganese minerals. Amer. Mineral., 35, 485–99.
Wadsley, A. D. (1952) The structure of lithiophorite, (Al,Li)MnO2(OH)2 . Ada Crystallogr., 5, 676–80.
Wadsley, A. D. (1955) The crystal structure of chalcophanite, ZnMn3O7.3H2O. Ada Crystallogr., 8, 165–72.


Crystal structures of synthetic 7 Å and 10 Å manganates substituted by mono- and divalent cations

  • Kenshi Kuma (a1), Akira Usui (a2), William Paplawsky (a3), Benjamin Gedulin (a3) and Gustaf Arrhenius (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed