Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-09-30T18:50:46.220Z Has data issue: false hasContentIssue false

How can Li be incorporated into the structure of Al-rich tourmaline?

Published online by Cambridge University Press:  27 June 2025

Peter Bačík*
Affiliation:
Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia
Andreas Ertl
Affiliation:
Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Wien, Austria Institut für Mineralogie und Kristallographie, Universität Wien, Wien, Austria
*
Corresponding author: Peter Bačík; Email: peter.bacik@uniba.sk

Abstract

Aluminium-rich tourmaline can contain significant amounts of Li. Until now, syntheses have not been successful in producing Li-rich tourmalines. Because it is still not clear how Li enters the Y site in tourmaline, possible short-range orders, including Li, are discussed using bond valence calculations. Structural arrangement graphs of the Y-site neighbourhood in the structure of elbaitic tourmalines were investigated to determine more information about their stability. Possible short-range ordering including Al and Li at the Y sites, with Na, Ca or □ (vacancy) at the X site, with Si (and Al or B) at the T sites and either (OH) or F at the W site were investigated. Tourmaline with varying amounts of Na but no Ca can only contain ≤1 apfu (atoms per formula unit) YLi. This is consistent with the composition of synthetic tourmaline. Tourmaline with higher Li content (Li >1 apfu) can form when Ca is included. Such tourmaline requires fluorine because more Li results in O1 underbonding, whereas more Al at the Y site leads to O1 overbonding. Underbonding of O1 is preferable for F because OH at the O1 site usually has a bond valence sum (BVS) higher than 1.00 vu (valence units) due to hydrogen bonding of H to ring oxygen atoms. Therefore, liddicoatitic tourmaline is enriched in F and is usually F-dominant. If no fluorine is available in the starting material of a tourmaline synthesis, it is likely that significant proportions of cations such as B and Al will be incorporated into the tetrahedral site. Ultimately, however, only a smaller proportion of Li can be incorporated. Tourmalines with such tetrahedral cations, which also contain a significant Ca content, could theoretically also have significant Y-site vacancies. In order to synthesise Li-rich tourmalines, we would therefore recommend that the starting material also contains both Ca and F.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This paper is part of a collection in tribute to the work of Edward Grew at 80.

Associate Editor: Giancarlo Della Ventura

References

Bačík, P. (2018) The crystal-chemical autopsy of octahedral sites in Na-dominant tourmalines: Octahedral metrics model unconstrained by the Y,Z-site disorder assignment. Journal of Geosciences (Czech Republic), 63, 137154.Google Scholar
Bačík, P. (2025) The bond-valence topological field modeling I: The bond-valence topological map of dravite from Forshammar, Sweden. American Mineralogist, accepted.Google Scholar
Bačík, P. and Fridrichová, J. (2021) Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals. American Mineralogist, 106, 851861.Google Scholar
Bačík, P., Uher, P., Ertl, A., Jonsson, E., Nysten, P., Kanický, V. and Vaculovič, T. (2012) Zoned REE-enriched dravite from a granitic pegmatite in Forshammar, Bergslagen Province, Sweden: An EMPA, XRD and LA-ICP-MS study. The Canadian Mineralogist, 50, 825841.Google Scholar
Bosi, F. (2010) Octahedrally coordinated vacancies in tourmaline: a theoretical approach. Mineralogical Magazine, 74, 10371044.Google Scholar
Bosi, F. (2011) Stereochemical constraints in tourmaline: from a short-range to a long-range structure. The Canadian Mineralogist, 49, 1727.Google Scholar
Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343351.Google Scholar
Bosi, F. (2018) Tourmaline crystal chemistry. American Mineralogist, 103, 298306.Google Scholar
Bosi, F., Agrosi, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005a) Mn-tourmaline from island of Elba (Italy): Crystal chemistry. American Mineralogist, 90, 16611668.Google Scholar
Bosi, F., Andreozzi, G.B., Federico, M., Graziani, G. and Lucchesi, S. (2005b) Crystal chemistry of the elbaite-schorl series. American Mineralogist, 90, 17841792.Google Scholar
Bosi, F., Skogby, H., Agrosi, G. and Scandale, E. (2012) Tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist, 97, 989994.Google Scholar
Bosi, F., Andreozzi, G.B., Skogby, H., Lussier, A.J., Abdu, Y. and Hawthorne, F.C. (2013) Fluor-elbaite, Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F, a new mineral species of the tourmaline supergroup. American Mineralogist, 98, 297303.Google Scholar
Bosi, F., Andreozzi, G.B., Agrosi, G. and Scandale, E. (2015) Fluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89101.Google Scholar
Brown, I.D. (2006) The Chemical Bond in Inorganic Chemistry. Oxford University Press, Oxford, UK, 292 pp.Google Scholar
Brown, I.D. (2013) bvparm2013.cif.txt. http://www.iucr.org/resources/data/datasets/bond-valence-parameters [posted 16 October 2013].Google Scholar
Burns, P.C., MacDonald, D.J. and Hawthorne, F.C. (1994) The crystal chemistry of manganese-bearing elbaite. The Canadian Mineralogist, 32, 3141.Google Scholar
Cempírek, J., Jonsson, E., Skřápková, L., Škoda, R., Kolitsch, U., Čopjaková, R., Groat, L.A., Kampf, A.R., Lussier, A.J., Hawthorne, F.C., Haifler, J., Holá, M. and Ende, M. (2025) Ertlite, NaAl3Al6(Si4B2O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup. American Mineralogist, 2025; doi:10.2138/am-2025-9816Google Scholar
Ertl, A. (2021) Why was it not possible to synthesize Li-rich tourmaline? NATURA, 111, 3132.Google Scholar
Ertl, A. (2023) Are the [6]-coordinated sites in tourmaline in certain cases partially vacant? Mineralogy and Petrology, 117, 201207.Google Scholar
Ertl, A. and Bačík, P. (2020) Considerations about Bi and Pb in the crystal structure of Cu-bearing Tourmaline. Minerals, 10, 706.Google Scholar
Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F., Wright, S.E., Brandstätter, F. and Marler, B. (2002) Polyhedron distortions in tourmaline. The Canadian Mineralogist, 40, 153162.Google Scholar
Ertl, A., Rossman, G.R., Hughes, J.M., Prowatke, S. and Ludwig, T. (2005) Mn-bearing “oxy-rossmanite” with tetrahedrally coordinated Al and B from Austria: Structure, chemistry, and infrared and optical spectroscopic study. American Mineralogist, 90, 481487.Google Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Prasad, P.S.R., Brandstätter, F., Körner, W., Schuster, R., Pertlik, F. and Marschall, H. (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: Structure, chemistry, and infrared spectroscopic studies. American Mineralogist, 91, 18471856.Google Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Brandstätter, F., Körner, W. and Dyar, M.D. (2007) Tetrahedrally-coordinated boron in Li-bearing olenite from “mushroom” tourmaline from Momeik, Myanmar. The Canadian Mineralogist, 45, 891899.Google Scholar
Ertl, A., Tillmanns, E., Ntaflos, T., Francis, C., Giester, G., Körner, W., Hughes, J.M., Lengauer, C. and Prem, M. (2008) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to the pressure–temperature conditions of formation. European Journal of Mineralogy, 20, 881888.Google Scholar
Ertl, A., Rossman, G., Hughes, J.M., London, D., Wang, Y., O’Leary, J.A., Darby, M.D., Prowatke, S., Ludwig, T. and Tillmanns, E. (2010) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation. American Mineralogist, 95, 2440.Google Scholar
Ertl, A., Giester, G., Ludwig, T., Meyer, H.-P. and Rossman, G.R. (2012a) Synthetic B-rich olenite: Correlations of single-crystal structural data. American Mineralogist, 97, 15911597.Google Scholar
Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klotzli, U., Brandstatter, F., Lengauer, C.L. and Tillmanns, E. (2012b) Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 24, 695715.Google Scholar
Ertl, A., Kolitsch, U., Dyar, M.D., Hughes, J.M., Rossman, G.R., Pieczka, A., Henry, D.J., Pezzotta, F., Prowatke, S., Lengauer, C.L., Korner, W., Brandstatter, F., Francis, C.A., Prem, M. and Tillmanns, E. (2012c) Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 97, 14021416.Google Scholar
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Lengauer, C.L., Meyer, H.-P., Giester, G., Kolitsch, U. and Prayer, A. (2022) Alumino-oxy-rossmanite from pegmatites in Variscan metamorphic rocks from Eibenstein an der Thaya, Lower Austria, Austria. American Mineralogist, 107, 157166.Google Scholar
Gagné, O.C. and F.C, Hawthorne. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gatta, G.D., Bosi, F., McIntyre, G.J. and Skogby, H. (2014) First accurate location of two proton sites in tourmaline: A single-crystal neutron diffraction study of oxy-dravite. Mineralogical Magazine, 78, 681692.Google Scholar
Hawthorne, F.C. (1996) Structural mechanisms for light-element variations in tourmaline. The Canadian Mineralogist, 34, 123132.Google Scholar
Hawthorne, F.C. (2002) Bond-valence constraints on the chemical composition of tourmaline. The Canadian Mineralogist, 40, 789797.Google Scholar
Hellingwerf, R.H., Gatedal, K., Gallagher, V. and Baker, J.H. (1994) Tourmaline in the central Swedish ore district. Mineralium Deposita, 29, 189205.Google Scholar
Henry, D.J. and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: internal crystallographic controls or external environmental influences? The Canadian Mineralogist, 49, 4156.Google Scholar
Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895913.Google Scholar
Kasatkin, A.V., Nestola, F., Day, M.C., Gorelova, L.A., Škoda, R., Vereshchagin, O.S., Agakhanov, A.A., Belakovskiy, D.I., Pamato, M.G. and Cempírek, J. (2024) Fluor-rossmanite, □(Al2Li)Al6(Si6O18)(BO3)3(OH)3F, a new tourmaline supergroup mineral from Malkhan pegmatite field, Western Siberia, Russia. Mineralogical Magazine, 88, 668676. doi:10.1180/mgm.2024.34.Google Scholar
Lussier, A.J., Abdu, Y., Hawthorne, F.C., Michaelis, V.K., Aguiar, P.M. and Kroeker, S. (2011) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. The Canadian Mineralogist, 49, 6388.Google Scholar
Novák, M., Škoda, R., Filip, J., Macek, I. and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic: an electron microprobe, Mössbauer and LA–ICP–MS study. The Canadian Mineralogist, 49, 359380.Google Scholar
Rieder, M., Cavazzini, G., Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval, P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1999) Nomenclature of the micas. Mineralogical Magazine, 63, 267279.Google Scholar
Selway, J.B., Novák, M., Hawthorne, F.C., Černý, P., Ottolini, L. and Kyser, T.K. (1998) Rossmanite, □(LiAl2)Al6Si6O18(BO3)3(OH)4, a new alkali-deficient tourmaline: description and crystal structure. American Mineralogist, 83, 896900.Google Scholar
Vereshchagin, O.S., Rozhdestvenskaya, I.V., Frank-Kamenetskaya, O.V., Zolotarev, A.A. and Mashkovtsev, R.I. (2013) Crystal chemistry of Cu-bearing tourmalines. American Mineralogist, 98, 16101616.Google Scholar