Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-02T18:51:26.424Z Has data issue: false hasContentIssue false

Major element chemistry of the geothermal sea-water at Reykjanes and Svartsengi, Iceland

Published online by Cambridge University Press:  05 July 2018

Stefán Arnórsson*
Affiliation:
National Energy Authority, Reykjavík, Iceland

Summary

High-temperature geothermal fields in Iceland represent localized anomalies of hot, altered rock in the uppermost part of the crust, which coincide with points of maximum tectonic/magmatic activity. These points correspond to the intersection of oblique fault swarms to the plate boundaries. Geothermal activity under mid-ocean ridges follows probably similar tectonic/magmatic anomalies.

Due to high permeability sea-water invades the bed-rock of the Reykjanes Peninsula, Iceland, and is overlain by a variably thick lens of dilute ground water of meteoric origin. The variable degree of salinity of geothermal waters in the Reykjanes Peninsula has resulted from different degree of mixing of fresh ground water with the underlying sea-water-ground-water in the downflow zones around the geothermal fields. At Reykjanes the geothermal water represents heated sea-water without any freshwater mixing. The difference in the composition of sea-water or sea-water/fresh water mixtures and the geothermal waters is due to basalt/water interaction at elevated temperatures. The major-element chemistry of the geothermal water represents an equilibrium composition at the relevant aquifer temperatures. The activities of silica, calcium, sulphate, and carbonate are thus limited by the solubilities of quartz, anhydrite, and calcite. Fluoride activity is thought to be controlled by an ionic exchange reaction where it substitutes for hydroxyl groups in phyllosilicates. The ratios of individual cations and hydrogen ion are governed by ionic exchange equilibria with hydrothermal minerals, probably smectite and chlorite. The equilibrium pH for the Reykjanes and Svartsengi geothermal waters is 5·5 and 5·1 respectively. Sea-water will become somewhat acid upon heating to more than about 300 °C and equilibration with basalt, the acidity increasing with temperature.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Árnason, (B.), 1975. Societas Scientarum Islandica. 42, 1236.Google Scholar
Arnórsson, (S.), 1970. Geothermics spec. issue 2, 2, 536-41.CrossRefGoogle Scholar
Arnórsson, (S.), 1974. In Geodynamics of Iceland and the North-Atlantic Area, Proceedings of the NATO Advanced Study Institute held in Reykjavík, I-7 July 1974, 307-23. D. Reidel Publishing Company, Dordrecht, Holland. 1975.Google Scholar
Arnórsson, (S.), 1975. Am. J. Sci. 275, 763-84.CrossRefGoogle Scholar
Arnórsson, (S.), Bjönsson, (A.), Gíslason, (G.), and Gudmundsson, (G.), 1975a. In Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, U.S.A., 20-9 May 1975, 2, 853-64.Google Scholar
Arnórsson, (S.), Ragnars, (K.), Benediktsson, (S.), Gíslason, (G.), Thór-hallsson, (Sv.), Björnsson, (Sv.), Grönvold, (K.), and Lindal, (B.), 1975b. Ibid. 3, 2077-82.Google Scholar
Arnórsson, (S.), Grönvold, (K.), and Sigurdsson, (S.), 1978. Geochim. Cosmochim. Acta. In press.Google Scholar
Barrett, (D. C.) and Aumento, (F.), 1970. Can. J. Earth Sci. 7, 1117-24.CrossRefGoogle Scholar
Bewers, (J. M.), 1971. Deep-Sea Research. 18, 237-4..Google Scholar
Bischoff, (J. L.) and Dickson, (F. W.), 1975. Earth Planet. Sci. Lett. 25, 385-97.CrossRefGoogle Scholar
Björnsson, (Sv.), Arnórsson, (S.), and Tómasson, (J.), 1972. Am. Assoc. Pet. Geol. Bull. 56, 2380-91.Google Scholar
Björnsson, (Sv.) and Einarsson, (P.), 1974. In Geodynamics of Iceland and the North-Atlantic Area, Proceedings of the NATO Advanced Study Institute held in Reykjavik, 1-7 July 1974, 225-39. D. Reidel Publishing Company, Dordrecht, Holland.CrossRefGoogle Scholar
Blount, (C. W.) and Dickson, (F. W.), I969. Geochim. Cosmochim. Acta. 33, 227-45.CrossRefGoogle Scholar
Bödvarsson, (G.), 1960. U.N. Conference on New Sources of Energy, Rome, 1960, paper G/6.Google Scholar
Cann, (J. R.) and Vine, (F. J.), 1966. Phil. Trans. R. Soc., ser. A, 259, 198217.Google Scholar
Ellis, (A. J.), 1970. Geothermics spec. issue 2. 2, 516-28.CrossRefGoogle Scholar
Fournier, (R. O.) and Rowe, (J. J.), 1966. Am. J. Sci. 264, 685-97.CrossRefGoogle Scholar
Garrels, (R. M.) and Thompson, (M. E.), 1962. Ibid. 260, 57-66.CrossRefGoogle Scholar
Gíslason, (G.), 1973. Study of high-temperature hydro-thermal alteration in Krísuvík and Námafjall. Unpub. B.Sc. thesis, University of Iceland. (In Icelandic.)Google Scholar
Hart, (R.), 1973. Can. J. Earth Sci. 10, 799-816.CrossRefGoogle Scholar
Helgeson, (H. C.), 1969. Am. J. Sci. 267, 729-8.4.CrossRefGoogle Scholar
Klein, (F.), Einarsson, (P.), and Wyss, (M.), 1973. J. Geophys. Res. 78, 5084-92.CrossRefGoogle Scholar
Kristmannsdóttir, (H.), 1975. In Proceedings of the Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, U.S.A., 20-9 May 1975, 1, 441-5.Google Scholar
Mahon, (W. A. J., 1966. New Zealand J. Sci. 9, 135-44.Google Scholar
Mason, (B.), 1966. Principles of Geochemistry, 3rd edn. John Wiley & Sons Inc., New York.Google Scholar
Melson, (W. G.), Thompson, (G.), and van Andel, (Tj. H.), 1968. Marine Geol. 4, 165-86.CrossRefGoogle Scholar
Mottl, (M. J.), Corr, (R. F.), and Holland, (H. D.), 1974. Abstr. Geol. Soc. Am. Ann. Mtgs. 879-80.Google Scholar
Nordstrom, (D. K.) and Jenne, (E. A.), 1977. Geochim. Cosmochim. Acta, 41, 175-88.CrossRefGoogle Scholar
Pálmason, (G.) and Sæmundsson, (K.), 1974. Ann. Rev. Earth Planet. Sci. 2, 25-59.CrossRefGoogle Scholar
Sigvaldason, (G. E.), 1963. U.S. Geol. Survey Prof. Pap. 450E, E77-9.Google Scholar
Sigvaldason, (G. E.), 1974. J. Petrol. 15, 479-524.CrossRefGoogle Scholar
Sigvaldason, (G. E.), 1976. Geochim. Cosmochim. Acta. 44, 777-89. [M.A. 77-1727].CrossRefGoogle Scholar
Tömasson, (J.) and Kristmannsdóttir, (H.), 1972. Contrib. Mineral. Petrol. 36, 123-34.CrossRefGoogle Scholar
Truesdell, (A. H.) and Singers, (W.), 1974. J. Res. U.S. Geol. Surv. 2, 271-8.Google Scholar
Walker, (G. P. L., 1966. Bull. volcan. 29, 375-4.6.CrossRefGoogle Scholar
White, (D. E.), Muffler, (L. J. P., and Truesdell, (A. H.), 1971. Econ. Geol. 66, 75-97.CrossRefGoogle Scholar
Wolery, (T. J.) and Sleep, (N. H.), 1976. J. Geol. 84, 249-76.CrossRefGoogle Scholar