Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T22:59:47.685Z Has data issue: false hasContentIssue false

The metamorphism of pyrite and pyritic ores: an overview

Published online by Cambridge University Press:  05 July 2018

James R. Craig
Affiliation:
Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
Frank M. Vokes
Affiliation:
Department of Geology and Mineral Resources Engineering, University of Trondheim-Norwegian Institute of Technology, 7034 Trondheim, Norway

Abstract

Pyrite, the most widespread and abundant of sulphide minerals in the Earth's surficial rocks, commonly constitutes the primary opaque phase in ore deposits. Consequently, an understanding of the behaviour of pyrite and its relationships with coexisting phases during the metamorphism of pyritebearing rocks is vital to the interpretation of their genesis and post-depositional history. Metamorphism is commonly responsible for the obliteration of primary textures but recent studies have shown that the refractory nature of pyrite allows it to preserve some pre-metamorphic textures. Pyrrhotite in pyritic ores has often been attributed to the breakdown of pyrite during metamorphism. It is now clear that pyrrhotite can be primary and that the presence of pyrrhotite with the pyrite provides a buffer that constrains sulphur activity during metamorphism. Pyrite-pyrrhotite ratios change during metamorphism as prograde heating results in sulphur release from pyrite to form pyrrhotite and as retrograde cooling permits re-growth of pyrite as the pyrrhotite releases sulphur. Retrograde growth of pyrite may encapsulate textures developed during earlier stages as well as preserve evidence of retrograde events. Sulphur isotope exchange of pyrite with pyrrhotite tends to homogenise phases during prograde periods but leaves signatures of increasingly heavy sulphur in the pyrite during retrograde periods.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annels, A. E., Vaughan, D. J., and Craig, J. R. (1983) Conditions of ore mineral formation in certain Zambian Copperbelt deposits with special reference to the role of cobalt. Mineral. Deposita, 18, 7188.Google Scholar
Atkinson, B. K. (1975) Experimental deformation of polycrystalline pyrite: Effects of temperature, confining pressure, strain rate, and porosity. Econ. Geol., 70, 473–87.Google Scholar
Barton, P. B. (1970) Sulfide petrology. Mineral. Soc. Am. Spec. Paper, 3, 187–98.Google Scholar
Barton, P. B. and Skinner, B. J. (1979) Sulfide mineral stabilities. In Geochemistry of Hydrothermal Ore Deposits, 2nd Edition (H. L. Barnes, ed.), John Wiley and Sons, New York, p. 279403.Google Scholar
Bell, T. H. and Johnson, S. E. (1989) Porphyroblast inclusion trials: The key to orogenesis. J. Metamorph. Geol., 7, 279310.Google Scholar
Bell, T. H. and Johnson, S. E. Forde, A., and Hayward, N. (1992) Do smoothly curving, spiral-shaped inclusion trails signify porphyroblast rotation? Geology, 20, 5962.Google Scholar
Brooker, D. D., Craig, J. R., and Rimstidt, J. D. (1987) Ore metamorphism and pyrite porphyroblast development at the Cherokee Mine, Ducktown, Tennessee. Econ. Geol., 82, 7286.Google Scholar
Carpenter, R. H. (1974) Pyrrhotite isograd in south-eastern Tennessee and southwestern North Carolina. Geol. Soc. Am. Bull., 85, 451–56.Google Scholar
Carstens, C. W. (1941) Zur frage der metamorphose der schwefelkieserze. Det Kong. Norske Vidensk., Forhandl., 16, 912.Google Scholar
Carstens, C. W. (1944), Om dannelsen av de norske svovelkfsforekomster. Ibid. 17, 1-28.Google Scholar
Cox, S. F. (1987) Flow mechanisms in sulphide min-erals. Ore Geol. Rev., 2, 133–71.Google Scholar
Cox, S. F. Etheridge, M. A., and Hobbs, B. E. (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol., 76, 2105–17.Google Scholar
Craig, J. R., (1983) Metamorphic features in Appala-chian massive sulphides. Mineral Mag., 47, 515–25.Google Scholar
Craig, J. R., and Vokes, F. M. (1986) The metamorphism of pyrite. Int'l Mineral. Assoc. Program with Abstracts, 135-6.Google Scholar
Craig, J. R., (in press) Pyrite in the paragenesis of metamorphosed ores. Proceedings 8th Quadrennial IAGOD meeting, Ottawa 1990. Stutgart, E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Craig, J. R., and Simpson, C. (1991) Rotational fabrics in pyrite from Ducktown, Tennessee. Econ. Geol., 86, 1737–46.Google Scholar
Edmond, J. M. and Von Damm, K. (1983) Hot springs on the ocean floor. Scientific Am., 248, 7884. 86, 89-93.Google Scholar
Eldridge, C. S., Compston, W., Williams, J. S., Both, R. A., Walshe, J. L., and Ohmoto, H. (1988) Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe shrimp: I. An example from the Rammelsberg orebody. Econ. Geol., 83, 443–9.Google Scholar
England, B. M. (1979) Cleavage in pyrite from Tasmania. Mineral. Mag., 43, 183–4.Google Scholar
Fleet, M. E., MacLean, P. J., and Barbier, J. (1989) Oscillatory-zoned As-bearing pyrites from strata-bound and stratiform gold deposits: An indicator of ore fluid evolution. Econ. Geol. Monograph 6, 356412.Google Scholar
Gair, J. E. and Slack, J. F. (1980) Stratabound massive sulfide deposits of the U.S. Appalachians. In Review of Caledonian—Appalachian Stratabound Sulphides (F. M. Vokes and Zachrisson, eds.) Geol. Sure. Ireland Spec. Paper 5, 67-81.Google Scholar
Gait, R. I. (1987) The crystal forms of pyrite. Mineral Record, 9, 219–29.Google Scholar
Gilligan, L. B. and Marshall, B. (1987) Textural evidence for remobilisation in metamorphic environments. Ore Geol. Rev., 2, 205–29.Google Scholar
Graf, J. L. and Skinner, B. J. (1970) Strength and deformation of pyrite and pyrrhotite: Econ. Geol., 65, 206–15.Google Scholar
Grønvold, F. and Westrum, E. F. (1976) Heat capacities of iron disulfides. Thermodynamics of macarsite from 5 to 700 K, pyrite from 350 to 700 K, and the transformation of marcasite to pyrite. J. Chem. Thermodynamics, 8, 1039–48.Google Scholar
Hall, A. J. (1986) Pyrite-pyrrhotine redox reactions in nature. Mineral. Mag., 50, 223–9.Google Scholar
Hall, D. L., Bodnar, R. J., and Craig, J. R. (1991) Evidence for postentrapment diffusion of hydrogen into peak metamorphic fluid inclusions from the massive sulfide deposits at Ducktown, Tennessee. Am. Mineral., 76, 1344–55.Google Scholar
Haymon, R. M. (1983) Growth history of hydrothermal black smoker chimneys. Nature, 301, 645–8.Google Scholar
Hollister, L. S. and Crawford, M. L. (1981) Mineral. Assoc. Canada Short Course in Fluid Inclusions: Application to Petrology, 304 p.Google Scholar
Hutchison, M. N. and Scott, S. D. (1980) Sphalerite geobarometry applied to metamorphosed sulfide ores of the Swedish Caledonides and the U.S. Appalachians. Norges Geol. Unders., 360, 5971.Google Scholar
Kelly, W. C. and Clark, B. R. (1975) Sulfide deformation studies: IIl. Experimental deformation of chalco-pyrite at 2,000 bars and 500 degrees Celcius. Econ. Geol., 70, 431–53.Google Scholar
Kissin, S. A. and Scott, S. D. (1982) Phase relations involving pyrrhotite below 350°C Ibid., 77, 1739-54.Google Scholar
Kullerud, G. (1967) Sulfide studies. In Researches in Geochemistry (P. H. Adleson, ed.) 2, Wiley, New York, pp. 286321.Google Scholar
Kullerud, G. and Yoder, H. S. (1959) Pyrite stability in the Fe-S system. Econ. Geol., 54, 533–72.Google Scholar
Lawrence, L. J. (1972) The thermal metamorphism of pyrite. Ibid., 67, 487-96.Google Scholar
LeHuray, A. P. (1984) Lead and sulfur isotopes and a model for the origin of the Ducktown deposit, Tennessee. Ibid., 79, 1561-73.Google Scholar
Lianxing, G. and McClay, K. R. (in press) Pyrite deformation in statiform lead-zinc deposits of the Canadian cordillera. Mineral. Deposita. Google Scholar
Loberg, B. E. H., Háber, M., and Westberg, S. B. (1985) Microhardness, reflectance and unit cell length of pyrites from Swedish base metal ores. Geol. Fören. i Stockholm Förhandl., 107, 4552.Google Scholar
Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A., and Jannasch, H. W. (1990) Biomineralisation of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature, 343, 258–61.Google Scholar
Marshall, R. L. and Gilligan, L. B. (1987) An introduction to remobilisation: Information from ore-body geometry and experimental considerations. Ore Geol. Rev., 2, 87131.Google Scholar
Mauger, B. (1972) A sulfur isotope study of the Ducktown, Tennessee District, U.S.A., Econ. Geol., 67, 497510.Google Scholar
McClay, K. R. and Ellis, P. G. (1983) Deformation and recrystallisation of pyrite. Mineral. Mag., 47, 527–38.Google Scholar
McClay, K. R. and Ellis, P. G. (1984) Deformation of pyrite. Econ. Geol., 79, 400403.Google Scholar
McKibben, M. A. and Eldridge, C. S. (1990) Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition: A shrimp study of the Valles caldera, New Mexico. Ibid., 85, 1917-25.Google Scholar
Mohr, D. W. and Newton, R. C. (1983) Kyanite-staurolite metamorphism in sulfidic schists of the Anakeesta formation, Great Smoky Mountains, North Carolina. Am. J. Sci., 283, 97134.Google Scholar
Mookherjee, A. (1971) Deformation of pyrite. Econ. Geol., 66, 200.Google Scholar
Mookherjee, A. (1976) Ores and metamorphism. Temporal and genetic relationships. In Handbook of Strata-bound and Stratiform Ore Deposits, (K. H. Wolf, ed.), 4, Elsevier, Amsterdam, pp. 203-60.Google Scholar
Morgan, J. (1991) In the beginning. Scientific Am., 264(2), 116-25.Google Scholar
Murowchick, J. B. (1992) Marcasite inversion and the petrographic determination of pyrite ancestry. Econ. Geol., 87, 1141–52.Google Scholar
Nesbitt, R. E. and Essene, E. J. (1983) Metamorphic volatile equilibria in a portion of the Southern Blue Ridge province. Am. J. Sci., 283, 135–65.Google Scholar
Nilsen, O. (1978) Caledonian sulphide deposits and minor iron-formations from the southern Trondheim region, central Norwegian Caledonides. Norges Geol. Unders., 340, 3585.Google Scholar
Plimer, I. R. (1977) The origin of the albite-rich rocks enclosing the cobaltian pyrite deposit of Thackaringa, NSW, Australia. Mineral. Deposita, 12, 175–87.Google Scholar
Plimer, I. R. (1987) Remobilisation in high-grade metamorphic environments. In Mechanical and chemical (re)mobi-lisation of metalliferous mineralisation (B. Marshall and L. B. Gilligan, eds.). Ore Geol. Rev., 2, 231–45.Google Scholar
Plimer, I. R. and Finlow-Bates, T. (1978) Relationship between primary iron sulphide species, sulphur source, depth of formation and age of submarine exhalative deposits. Mineral. Deposita, 13, 399410.Google Scholar
Ramanarayanan, T. A. and Smith, S. N. (1990) Corrosion of iron in gaseous environments and in gas-saturated aqueous environments. Corrosion, 46, 6674.Google Scholar
Ramdohr, P. (1969) The Ore Minerals and Their Overgrowths, 3rd ed., Pergamon Press, Oxford, 1174 pp.Google Scholar
Rising, B. A. (1973) Phase relations among pyrite, marcasite, and pyrrhotite below 300°C Ph.D. thesis (unpubl.), The Pennsylvania State University, 192 pp.Google Scholar
Roedder, E. (1984) Fluid Inclusions, Mineral. Soc. Am., Reviews in Mineralogy, 12, 644 pp.Google Scholar
Rosenfeld, J. L. (1970) Rotated garnets in metamorphic rocks. Geol. Soc. Am. Spec. Paper, 129, 105 pp.Google Scholar
Ross, C. S. (1935) Origin of the Copper deposits of the Ducktown type in the southern Appalachian region. U.S. Geol. Surv. of Prof. Paper, 179, 165 pp.Google Scholar
Schoneveld, C. (1977) A study of some typical inclusion patterns in strongly paracrystalline-rotated garnets. Tectonophys., 39, 453–71.Google Scholar
Scott, S. D. (1976) Application of the spalerite geobarometer to regionally metamorphosed terrains. Am. Mineral., 61, 661–70.Google Scholar
Scott, S. D. (1983) Chemical behaviour of sphalerite and arsenopyrite in hydrothermal and metamorphic environments. Mineral. Mag., 47, 427–35.Google Scholar
Selkman, S. O. (1983) Stress and displacement distributions around pyrite grains. Econ. Geol., 5(1), 4752.Google Scholar
Shadlum, T. N. (1971) Metamorphic textures and structures of sulphide ores. Soc. Mining Geol. Japan, Spec. Issue, 3, 241–50.Google Scholar
Siemes, H., Hennig-Michaeli, C., and Martens, L. (1991) The importance of deformation experiments on minerals for the interpretation of metamorphic ore textures. Ore Geol. Rev., 6, 475–83.Google Scholar
Spear, F. S. and Selverstone, J. (1983) Quantitative P-Tpaths from zoned minerals: Theory and tectonic applications. Contrib. Mineral. Petrol., 83, 348–57.Google Scholar
Spear, F. S. and Selverstone, J. Hickmott, D., Crowley, P., and Hodges, K. V. (1984) P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crys-talline terraines. Geology, 12, 8790.Google Scholar
Spry, A. (1963) The origin and significance of snowball structure in garnet. J. Petrol., 4, 211–22.Google Scholar
Stanon, R. L. (1972) Ore Petrology, McGraw Hill, New York, 713 p.Google Scholar
Stanon, R. L. and Gorman, H. (1968) A phenomenological study of grain boundary migration in some common sulphides. Econ. Geol., 63, 907–23.Google Scholar
Stose, A. J. and Stose, G. W. (1957) Geology and mineral resources of the Gossan Lead District and adjacent areas in Virginia. Virginia Div. Min. Res. Bull., 72, 233 p.Google Scholar
Templeman-Kluit, D. J. (1970) The relationship between sulphide grain size and metamorphic grade of host rocks in some stratabound pyritic ores. Canadian J. Earth. Sci., 7, 1339–45.Google Scholar
Toulmin, P. and Barton, P. B. (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim. Cosmochim. Acta, 28, 641–71.Google Scholar
Vaughan, D. J. and Craig, J. R. (1978) Mineral Chemistry of Metal Sulfides, Cambridge Univ. Press, Cambridge, England, 493 pp.Google Scholar
Vokes, F. M. (1963) Geological studies on the Caledonian pyritic lead-zinc orebody at Bleikvassli, Nordland, Norway. Norges Geol. Unders., 222, 126 pp.Google Scholar
Vokes, F. M. (1968) Regional metamorphism of the Paleozoic geosynclinal sulphide ore deposits of Norway Trans. Inst. Mining Metall. Sect. B, Appl. Earth Sci. B53-9.Google Scholar
Vokes, F. M. (1969) A review of the metamorphism of sulphide deposits. Earth Sci. Rev., 5, 99143.Google Scholar
Vokes, F. M. (1971) Some aspects of the regional metamorphic mobilisation of pre-existing sulphide deposits. Mineral. Deposita, 6, 122–9.Google Scholar
Vokes, F. M. (1973) 'Ball texture' in sulphide ores. Geol. FOr. Stockholm FOrh., 95, 403–5.Google Scholar
Weed, W. H. and Watson, T. L. (1906) The Virginia copper deposits. Econ. Geol., 1, 309–30.Google Scholar
Zierenberg, R. A. and Shanks, W. C. (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediments, Atlantic II Deep, Red Sea. Ibid., 78, 5772.Google Scholar