Skip to main content Accessibility help
×
Home

A multiple regression method for estimating Li in tourmaline from electron microprobe analyses

  • A. Pesquera (a1), P. P. Gil-Crespo (a1), F. Torres-Ruiz (a2), J. Torres-Ruiz (a3) and E. Roda-Robles (a1)...

Abstract

Lithium cannot be determined by electron microprobe, but it may be an essential component in tourmalinesupergroup minerals. Therefore, its estimation is important for structural formula calculation and nomenclature. In this paper, we present a method to estimate Li content in tourmaline from microprobe data based on a multiple linear-regression model, which is not reliant on a particular normalization scheme. The results derived from this model are reasonably accurate, particularly for low-Mg tourmalines (<2 wt.% MgO) with Li2O contents higher than ∼0.3 wt.%. Furthermore, it provides a better fitness compared with estimations of Li assuming that Li fills any cation deficiency at the Y site.

Copyright

Corresponding author

References

Hide All
Aurisicchio, C., Demartin, F., Ottolini, L. and Pezzotta, E (1999a) Homogeneous liddicoatite from Madagascar: a possible reference material? First EMPA, SIMS and SREF data. European Journal of Mineralogy, 11, 237242.
Aurisicchio, C., Ottolini, L. and Pezzotta, F. (1999b) Electron- and ion-microprobe analyses, and genetic inferences of tourmalines of the foitite-schorl solid solution, Elba Island (Italy). European Journal of Mineralogy, 11, 217225.
Bloodaxe, E.S., Hughes, J.M., Dyar, M.D., Grew, E.S. and Guidotti, C.V. (1999) Linking structure and chemistry in the Schorl-Dravite series. American Mineralogist, 84, 922928.
Bosi, F., Agrosi, G., Lucchesi, S., Melchiorre, G. and Scandale, E. (2005a) Mn-tourmaline from island of Elba (Italy): Crystal chemistry. American Mineralogist, 90, 16611668.
Bosi, F., Andreozzi, G.B., Federico, M., Graziani, G. and Lucchesi, S. (2005b) Crystal chemistry of the elbaite-schorl series. American Mineralogist, 45, 1784—1792.
Clark, C.M. (2007) Tourmaline: Structural formula calculations. The Canadian Mineralogist, 45, 229–223
Deer, W.A., Howie, R.A. andZussman, J. (2008)Disilicates and Ring Silicates. Rock-forming Minerals, 1B, 2nd Ed. Longman Sci. & Tech., England.
Dutrow, B.L. and Henry, D.J. (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids. The Canadian Mineralogist, 38, 131143.
Dyar, M.D., Taylor, M.E., Lutz, T.M., Francis, C.A., Guidotti, C.V. and Wise, M. (1998) Inclusive chemical characterization of tourmaline: Mossbauer study of Fe valence and site occupancy. American Mineralogist, 83, 848864.
Dyar, M.D., Guidotti, C.V., Core, D.P., Wearn, K.M., Wise, M.A., Francis, C.A., Johnson, K., Brady, J.B., Robertson, J.D. and Cross, L.R. (1999) Stable isotope and crystal chemistry of tourmaline across pegmatite-country rock boundaries at Black Mountain and Mount Mica, southwestern Maine, USA. European Journal of Mineralogy, 11, 281294.
Ertl, A., Hughes, J.M., Prowatke, S., Rossman, G.R., London, D. and Fritz, E.A. (2003) Mn-rich tourmaline from Austria: structure, chemistry, optical spectra, and relations to synthetic solid solutions. American Mineralogist, 88, 13691376.
Ertl, A., Rossman, G.R., Hughes, J.M., Prowatke, S. and Ludwig, T. (2005) Mn-bearing “oxy-rossmanite” with tetrahedrally coordinated At and B from Austria: Structure, chemistry, and infrared and optical spectro-scopic study. American Mineralogist, 90, 481—487.
Ertl, A., Hughes, J.M., Prowatke, S., Ludwig, T., Prasad, P.S.R.., Brandstatter, F., Korner, W., Schuster, R., Pertlik, F. and Marschall, H. (2006) Tetrahedrally coordinated boron in tourmalines from the liddicoatite-elbaite series from Madagascar: Structure, chemistry, and infrared spectroscopic studies. American Mineralogist, 91, 18471856.
Ertl, A., Rossman, G.R., Hughes, J.M., London, D., Wang, Y., O'Leary, J.A., Dyar, M.D., Prowatke, S., Ludwig, T. and Tillmanns, E. (2010) Tourmaline of the elbaite-schorl series from the Himalaya Mine, Mesa Grande, California: A detailed investigation. American Mineralogist, 95, 24—40.
Ertl, A., Schuster, R., Hughes, J.M., Ludwig, T., Meyer, H.-P., Finger, F., Dyar, M.D., Ruschel, K., Rossman, G.R., Klötzli, U., Brandstätter, F., Lengauer, C.L. and Tillmanns, E. (2012) Li-bearing tourmalines in Variscan granitic pegmatites from the Moldanubian nappes, Lower Austria. European Journal of Mineralogy, 24, 695715.
Federico, M., Andreozzi, G.B., Lucchesi, S., Graziani, G. and Cesar-Mendes, J. (1998) Compositional variation of tourmaline in the granitic pegmatite dykes of the Cruzeiro mine, Minas Gerais, Brazil. The Canadian Mineralogist, 36, 415431.
Henry, D.J. and Dutrow, B.L. (2002) Metamorphic tourmaline and its petrologic applications. Pp. 503-557 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 3. Mineralogical Society of America Washington DC.
Henry, D.J., Novak, M., Hawthorne, F.C., Ertl, A., Dutrow, B.L., Uher, P. and Pezzotta, F (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895—913.
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1986) Tourmaline as a recorder of pegmatite evolution; Bob Ingersoll Pegmatite, Black Hills, South Dakota. American Mineralogist, 71, 472500.
Kalt, A., Schreyer, W., Ludwig, T., Prowatke, S., Bernhardt, H.J. and Ertl, A. (2001) Complete solid solution between magnesian schorl and lithian excess-boron olenite in a pegmatite from the Koralpe (eastern Alps, Austria). European Journal of Mineralogy, 13, 11911205.
Leeman, W.P. and Sisson, V.B. (2002) Geochemistry of boron and its implications for crustal and mantle processes. Pp. 645—708 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.
London, D., Morgan, G.B.(VI) and Wolf, M.B. (2002) Boron in granitic rocks and their contact aureoles. Pp. 299—330 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.
McGee, J.J. and Anovitz, L.M. (2002) Electron probe microanalysis of geologic materials for boron. Pp. 771—788 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.
Pieczka, A. and Kraczka, J. (2004) Oxidized tourmalines — a combined chemical, XRD and Mossbauer study. European Journal of Mineralogy, 16, 309—321.
Roda-Robles, E., Pesquera, A., Gil-Crespo, P. and Torres-Ruiz, J. (2012) From granite to highly evolved pegmatite: A case study of the Pinilla de Fermoselle granite—pegmatite system (Zamora, Spain). Lithos, 153, 192207.
Roda-Robles, E., Simmons, W., Pesquera, A., Gil-Crespo, P.P., Nizamoff, J. and Torres-Ruiz, J. (2015) Tourmaline as a petrogenetic monitor of the origin and evolution of the Berry-Havey pegmatite (Maine U.S.A.). American Mineralogist, 153, 95109.
Slack, J.F. (2002) Tourmaline associations with hydro-thermal ore deposits. Pp. 559—644 in: Boron: Mineralogy, Petrology, and Geochemistry, [2nd printing] (L.M. Anovitz and E.S. Grew, editors). Reviews in Mineralogy, 33. Mineralogical Society of America Washington DC.
Tindle, A.G., Breaks, F.W. and Selway, J.B. (2002) Tourmaline in petalite-subtype granitic pegmatites: Evidence of fractionation and contamination from the Pakeagama Lake and Separation Lake areas of northwestern Ontario, Canada. The Canadian Mineralogist, 40, 753788.
van Hinsberg, V.J., Henry, D.J. and Marschall, H.R. (2011) Tourmaline: an ideal indicator of its host environment. The Canadian Mineralogist, 49, 116.
Zagorsky, Y.Y (2015) Sosedka pegmatite body at the Malkhan deposit of gem tourmaline, Transbaikalia: Composition, inner structure, and petrogenesis. Petrology, 23, 6892.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed