Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-01T10:08:25.264Z Has data issue: false hasContentIssue false

Rewitzerite, K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O)10⋅4H2O, a new monoclinic paulkerrite-group mineral, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany

Published online by Cambridge University Press:  24 July 2023

Ian E. Grey*
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Rupert Hochleitner
Affiliation:
Mineralogical State Collection (SNSB), Theresienstrasse 41, 80333, München, Germany
Anthony R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stephanie Boer
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
Colin M. MacRae
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
William G. Mumme
Affiliation:
CSIRO Mineral Resources, Private Bag 10, Clayton South, Victoria 3169, Australia
Erich Keck
Affiliation:
Independent researcher, Algunderweg 3, D-92694, Etzenricht, Germany.
*
Corresponding author: Ian E. Grey; Email: ian.grey@csiro.au

Abstract

Rewitzerite, K(H2O)Mn2(Al2Ti)(PO4)4[O(OH)](H2O)10⋅4H2O, is a new monoclinic member of the paulkerrite group, from the Hagendorf-Süd pegmatite, Oberpfalz, Bavaria, Germany. It was found in specimens of altered zwieselite, in association with rockbridgeite. Rewitzerite forms clusters of colourless elongated hexagonal-shaped prisms, up to 0.1 mm long. The crystals are flattened on {010} and elongated along [100], with forms {010}, {001}, {111} and {$\bar{1}$11}. The calculated density is 2.33 g⋅cm–3. Optically, rewitzerite crystals are biaxial (+), with α = 1.585(2), β = 1.586(2), γ = 1.615(2) (measured in white light) and 2V(meas) = 25(2)°. The empirical formula from electron microprobe analyses and structure refinement is A1[K0.77(H2O)0.23]A2[H2O] M1(Mn2+0.82Mg0.64Fe3+0.430.11)Σ2.00 M2+M3(Al1.51Ti4+1.06Fe3+0.43)Σ3.00(PO4)4 X[(OH)0.54F0.42O1.04]Σ2.00(H2O)10⋅4H2O, where □ = vacancy.

Rewitzerite has monoclinic symmetry with space group P21/c and unit-cell parameters a = 10.444(2) Å, b = 20.445(2) Å, c = 12.2690(10)Å, β = 90.17(3)°, V = 2619.8(6) Å3 and Z = 4. The crystal structure was refined using synchrotron single-crystal data to wRobs = 0.068 for 5894 reflections with I > 3σ(I). The crystal structure has the same topology as that for orthorhombic paulkerrite-group minerals but differs primarily in having an ordering of K+ and H2O molecules in different A sites, whereas they are disordered at a single A site in the orthorhombic members of the group.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Michele Dondi

References

Aragao, D., Aishima, J., Cherukuvada, H., Clarken, R., Clift, M., Cowieson, N.P., Ericsson, D.J., Gee, C.L., Macedo, S., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunnicliffe, A., Rostan, R., Williamson, R. and Caradoc-Davies, T.T. (2018) MX2: a high-flux undulator microfocus beamline serving both the chemical and macromolecular crystallography communities at the Australian Synchrotron, Journal of Synchrotron Radiation, 25, 885891.CrossRefGoogle ScholarPubMed
Bamberger, C.E., Begun, G.M. and MacDougall, C.S. (1990) Raman spectroscopy of potassium titanates: Their synthesis, hydrolytic reactions and thermal stability. Applied Spectroscopy, 44, 3137.CrossRefGoogle Scholar
Demartin, F., Pilati, T., Gay, H.D. and Gramaccioli, C.M. (1993) The crystal structure of a mineral related to paulkerrite. Zeitschrift fur Kristallographie, 208, 5771.Google Scholar
Demartin, F., Gay, H.D., Gramaccioli, C.M. and Pilati, T. (1997) Benyacarite, a new titanium-bearing phosphate mineral species from Cerro Blanco, Argentina. The Canadian Mineralogist, 35, 707712.Google Scholar
Dowty, E. (2004) ATOMS for Windows, vsn 6.1. Shape Software, Kingsport, USA.Google Scholar
Fransolet, A.-M., Oustriere, P., Fontan, F. and Pillard, F. (1984) La mantiennéite, une novelle espèce minérale du gisement de vivianite d'Anloua, Cameroun. Bulletin de Mineralogie, 107, 737744.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gaines, R.V., Skinner, C.W., Foord, E.E., Mason, B. and Rosenzweig, A. (1997) Dana's New Mineralogy – The system of mineralogy of James Dwight Dana and Edward Salisbury Dana. Eighth Edition. John Wiley and Sons, New York, 1997.Google Scholar
Grey, I.E., Kampf, A.R., Keck, E., MacRae, C.M., Cashion, J.D., and Gozukara, Y. (2018) Crystal chemistry of schoonerite-group minerals, European Journal of Mineralogy, 30, 621634.CrossRefGoogle Scholar
Grey, I.E., Kampf, A.R., Keck Cashion, J.D., E., MacRae, C.M., Gozukara, Y. and Shanks, F.L. (2019) Ferrirockbridgeite, (Fe3+0.670.33)2(Fe3+)3(PO4)3(OH)4(H2O), and the oxidation mechanism for rockbridgeite-group minerals. European Journal of Mineralogy, 31, 585594.CrossRefGoogle Scholar
Grey, I.E., Bosi, F., Mumme, W.G and Boer, S. (2023a) IMA 22-K-bis – Establishment of the paulkerrite group. CNMNC Newsletter 74. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.54.Google Scholar
Grey, I.E., Hochleitner, R., Kampf, A.R., Boer, S., MacRae, C.M., Mumme, W.G. and Keck, E. (2023b) Rewitzerite, IMA 2023-005. CNMNC Newsletter 73. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.44.Google Scholar
Grey, I.E., Hochleitner, R., Rewitzer, C., Kampf, A.R., MacRae, C.M., Gable, R.W., Mumme, W.G., Keck, E. and Davidson, C. (2023c) Pleysteinite, (H2O)0.5K0.5]2Mn2Al3(PO4)4F2(H2O)10⋅4H2O, the Al analogue of benyacarite, from the Hagendorf Sud pegmatite, Oberpfalz, Bavaria, Germany. European Journal of Mineralogy, 35, 189197.CrossRefGoogle Scholar
Grey, I.E., Keck, E., Kampf, A.R., MacRae, C.M., Gable, R.W., Numme, W.G., Glenn, A.M. and Davidson, C. (2023d) Hochleitnerite, IMA 2022–141. CNMNC Newsletter 72. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.21.Google Scholar
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. The Microscope, 52, 2339.Google Scholar
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The viMivT2Φn minerals. American Mineralogist, 70, 455473.Google Scholar
Kampf, A.R., Alves, P., Kasatkin, A. and Škoda, R. (2019) Jahnsite-(MnMnZn), a new jahnsite-group mineral, and formal approval of the jahnsite group. European Journal of Mineralogy, 31, 167172.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and OH⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Mills, S.J. and Grey, I.E. (2015) Nomenclature for the laueite supergroup. Mineralogical Magazine, 79, 243246.CrossRefGoogle Scholar
Peacor, D.R., Dunn, P.J. and Simmons, W.B. (1984) Paulkerrite a new titanium phosphate from Arizona. The Mineralogical Record, 15, 303306.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift fur Kristallographie, 229, 345352.Google Scholar
Sheldrick, G.M. (2015) Crystal-structure refinement with SHELX, Acta Crystallographica, C71, 38.Google Scholar
Silva, F.L.R., Filho, A.A.A., Silva, M.B., Balzuweit, K., Bantiignies, J.-L., Caetano, E.W.S., Moreira, R.L., Freire, V.N. and Righi, A. (2018) Polarized Raman, FTIR, and DFT study of Na2Ti3O7 microcrystals. Journal of Raman Spectroscopy, 49, 535548.CrossRefGoogle Scholar
Stassen, S., Tarte, P. and Rulmont, A. (1998) The barium titano-disilicate BaTiSi2O7; a structural investigation by vibrational spectroscopy and X-ray powder diffraction. Spectrochimica Acta, A54, 14231431.CrossRefGoogle Scholar
Su, Y., Balmer, L. and Bunker, B.C. (2000) Raman spectroscopic studies of silicotitanates. Journal of Physical Chemistry, B104, 81608169.CrossRefGoogle Scholar
Tu, C.-S., Guo, A.R., Tao, R., Katiyar, R.S., Guo, R. and Bhalla, A.S. (1996) Temperature dependent Raman scattering in KTiOPO4 and KTiOAsO4 single crystals. Journal of Applied Physics, 79, 32353240.CrossRefGoogle Scholar
Yakubovich, O.V. and Kireev, V.V. (2003) Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 48, 2428.CrossRefGoogle Scholar
Supplementary material: File

Grey et al. supplementary material 1

Grey et al. supplementary material
Download Grey et al. supplementary material 1(File)
File 161.2 KB
Supplementary material: File

Grey et al. supplementary material 2

Grey et al. supplementary material
Download Grey et al. supplementary material 2(File)
File 536.3 KB