Skip to main content
×
×
Home

Sm-Nd and Lu-Hf isotope and trace-element systematics of Mesoarchaean amphibolites, inner Ameralik fjord, southern West Greenland

  • Kristoffer Szilas (a1), J. Elis Hoffmann (a2) (a3) (a4), Christina Hansmeier (a2), Julie A. Hollis (a5) (a6), Carsten Münker (a3), Sebastian Viehmann (a7) and Haino U. Kasper (a3)...
Abstract

Fragmented supracrustal rocks are typical components of Archaean high-grade gneiss terranes, such as those in the North Atlantic Craton. Here we present the first major, trace element and Nd-Hf isotope data for amphibolites collected in the yet poorly studied southern inner Ameralik fjord region of southern West Greenland. In addition, new U-Pb zircon ages were obtained from the surrounding TTG gneisses.

Based on their trace-element patterns, two different groups of amphibolites can be distinguished. Following screening for post-magmatic alteration and outlying ε values, a reduced sample set defines a 147Sm/143Nd regression age of 3038 Ma ±310 Ma (MSWD = 9.2) and a 176Lu/176Hf regression age of 2867 ±160 Ma (MSWD = 5.5). Initial εNd2970Ma values of the least-altered amphibolites range from 0.0 to +5.7 and initial εHf2970Ma range from +0.7 to +10.4, indicating significant isotopic heterogeneity of their mantle sources with involvement of depleted domains as well as crustal sources.

Surprisingly, the amphibolites which are apparently most evolved and incompatible element-rich have the most depleted Hf-isotope compositions. This apparent paradox may be explained by the sampling of a local mantle source region with ancient previous melt depletion, which was re-enriched by a fluid component during subduction zone volcanism or alternatively by preferential melting of an ancient pyroxenite component in the mantle source of the enriched rocks.

Copyright
Corresponding author
*E-mail: szilas@stanford.edu
Footnotes
Hide All

This paper is published as part of a special set in Mineralogical Magazine, Volume 79(4), 2015, arising out of the March 2014 NAC Conference on the North Atlantic Craton.

Footnotes
References
Hide All
Adam, J., Rushmer, T., O'Neil, J. and Francis, D. (2012) Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth's early continental crust. Geology, 40, 363366.
Ashwal, L.D., Morrison, D.A., Phinney, W.C. and Wood, J. (1983) Origin of Archean anorthosites: evidence from the Bad Vermilion Lake complex, Ontario. Contributions to Mineralogy and Petrology, 82, 259273.
Barker, F., Arth, J.G. and Millard, H.T. (1979) Archaean trondhjemites of the southwestern Big Horn Mountains, Wyoming: a preliminary report. Pp. 401414 in: Trondhjemites, Dacites and Related Rocks (F. Barker, editor). Elsevier, Amsterdam.
Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y. and Pearson, NJ. (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos, 119, 457466.
Bhaskar Rao, Y.J., Chetty, T.R.K., Janardhan, A.S. and Gopalan, K. (1996) Sm-Nd and Rb-Sr ages and P-T history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in Cauvery shear zone, South India: Evidence for neoproterozoic reworking of archean crust. Contributions to Mineralogy and Petrology, 125, 237250.
Bouvier, A., Vervoort, J.D. and Patchett, PJ. (2008) The Lu—Hf and Sm—Nd isotopic composition of CHUR: constraints from unequillibrated chondrites and applications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 4857.
Clemens, J.D., Yearron, L.M. and Stevens, G. (2006) Barberton (South Africa) TTG magmas: Geochemical and experimental constraints on source-rock petrology, pressure of formation and tectonic setting. Precambrian Research, 151, 5378.
Condie, K.C. (editor) (1994) Archean Crustal Evolution. Developments in Precambrian Geology 11. Elsevier, Amsterdam, 528 pp.
Dhuime, B., Hawkesworth, C.J., Cawood, P.A. and Storey, CD., (2012) A change in the geodynamics of continental growth 3 billion years ago. Science, 335, 13341336.
Dziggel, A., Diener, J.F.A., Kolb, J. and Kokfelt, T.F. (2014) Metamorphic record of accretionary pro-cesses during the Neoarchaean: The Nuuk region, southern West Greenland. Precambrian Research, 242, 2238.
Foley, S.F., Tiepolo, M. and Vannucci, R. (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature, 417, 837840.
Frei, D. and Gerdes, A. (2009) Accurate and precise in-situ zircon U-Pb age dating with high spatial resolution and high sample throughput by automated LA-SF-ICP-MS. Chemical Geology, 261, 261270.
Friend, C.R.L. and Nutman, A.P. (2005) New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern West Greenland: steps in transforming a simple insight into a complex regional tectonothermal model. Journal of the Geological Society, 162, 147162.
Friend, C.R.L., Nutman, A.P. and McGregor, V.R. (1988) Late Archean terrane accretion in the Godthab region, southern West Greenland. Nature, 335, 535538.
Friend, C.R.L., Nutman, A.P., Baadsgaard, H. and Duke, MJ.M. (2008) The whole rock Sm-Nd ‘age’ for the 2825 Ma Ikkattoq gneisses (Greenland) is 800 Ma too young: Insights into Archaean TTG petrogenesis. Chemical Geology, 261, 6276.
Garde, A.A. (2007) A mid-Archean island arc complex in the eastern Akia terrane, Godthabsfjord, southern West Greenland. Journal of the Geological Society of London, 164, 565579.
Hoffmann, J.E., Miinker, C, Polat, A., Konig, S., Mezger, K. and Rosing, M.T. (2010) Highly depleted Hadean mantle reservoirs in the sources of early Archean arc-like rocks, Isua supracrustal belt, southern West Greenland. Geochimica et Cosmochimica Ada, 74, 72367260.
Hoffmann, J.E., Miinker, C, Nteraa, T., Rosing, M.T., Garbe-Schonberg, D. and Svahnberg, H. (2011a) Mechanisms of Archean crust formation inferred from high-precision HFS systematics in TTGs. Geochimica et Cosmochimica Ada, 75, 41574178.
Hoffmann, J.E., Miinker, C, Polat, A., Rosing, M.T. and Schulz, T. (20116) Origin of decoupled Hf-Nd isotope compositions in Eoarchean rocks from southern West Greenland. Geochimica et Cosmochimica Ada, 75, 66106628.
Hoffmann, J.E., Svahnberg, H., Piazolo, S., Schersten, A. and Muenker, C. (2012) The geodynamic evolution of Mesoarchean anorthosite complexes inferred from the Naajat Kuuat Complex, southern West Greenland. Precambrian Research, 196, 149170.
Hollis, J.A. (editor) (2005) Greenstone belts in the central Godthabsfjord region, southern West Greenland. Danmarks og Gronlands Geologiske Undersogelse rapport 2005/42. GEUS, Copenhagen, 215 pp.
Jackson, M.P.A. (1984) Archaean structural styles in the Ancient Gneiss Complex of Swaziland, southern Africa. Pp. 118 in: Precambrian Tectonics Illustrated (A. Kroner and R. Greiling, editors). Schweizerbart, Stuttgart, Germany.
Jahn, B., Glikson, A.Y., Peucat, J.-J. and Hickman, A.H. (1981) REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara block, western Australia: implications for early crustal evolution. Geochimica et Cosmochimica Ada, 45, 16331652.
Keulen, N., Schumacher, J.C., Nteraa, T., Kokfelt, T.F.,
Schersten, A., Szilas, K., van Hinsberg, V.J., Schlatter, D.M. and Windley, B.F. (2014) Meso-and Neoarchaean geological history of the Bjornesund and Ravns Storo Supracrustal Belts, southern West Greenland: Settings for gold enrich-ment and corundum formation. Precambrian Research, 254, 3658.
Kisters, A.F., van Hinsberg, V.J. and Szilas, K. (2012) Geology of an Archaean accretionary complex—The structural record of burial and return flow in the Tartoq Group of South West Greenland. Precambrian Research, 220, 107122.
Martin, H. (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology, 14, 753756.
Martin, H. (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 46, 411429.
McGregor, V.R., Friend, C.R.L. and Nutman, A.P. (1991) The late Archaean mobile belt through Godthabsfjord, southern West Greenland: a con-tinent-continent collision zone. Bulletin of the Geological Society of Denmark, 39, 179197.
Mohan, M.R., Satyarayanan, M., Santosh, M., Sylvester, P.J., Tubrett, M. and Lam, R. (2012) Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anothosite Complex. Gondwana Research, 23, 539557.
Moyen, IF. and Martin, H. (2012) Forty years of TTG research. Lithos, 148, 312336.
Moyen, J.F., Stevens, G., Kisters, A.F.M. and Belcher, R.W. (2007) TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. Pp. 607667 in: Earth's Oldest Rocks (MJ. van Kranendonk, R.H. Smithies and Bennett, V.C. (editors). Developments in Precambrian Geology (Condie, K.C., Series editor), vol. 15. Elsevier, B.V., Amsterdam.
Miinker, C, Weyer, S., Scherer, E. and Mezger, K. (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf): and Lu from rock samples for MC-ICPMS measurements. Geochememistry Geophysics Geosystems 2 (G3), 2(12), doi:10.1029/ 2001GC000183.
Nreraa, T. and Schersten, A. (2008) New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 15, 7376.
Naraa, T. (2011) Zircon U/Pb, Hf and O isotope systematics from the Archaean Basement in the Nuuk region, southern West Greenland: Constrains on the early evolution of the continental crust. Doctoral dissertation, Kobenhavns Universitet, Copenhagen.
Nreraa, T., Schersten, A., Rosing, M.T., Kemp, A.I.S., Hoffmann, J.E., Kokfelt, T.F. and Whitehouse, MJ. (2012) Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature, 485(7400), 627-630.
Nagel, T.J., Hoffmann, J.E. and Miinker, C. (2012) Generation of Eoarchean tonalite-trondhjemite-granodiorites series from thickened mafic arc crust. Geology, 40, 375378.
Nutman, A.P. and Friend, C.R.L. (2007) Adjacent terranes with ca. 2715 and 2650 Ma high-pressure metamorphic assemblages in the Nuuk region of the North Atlantic Craton, southern West Greenland: Complexities of Neoarchean collisional orogeny. Precambrian Research, 155, 159203.
Nutman, A.P., McGregor, V.R., Friend, C.R.L., Bennett, V.C. and Kinny, P.D., 1996. The Itsaq Gneiss Complex of southern West Greenland: the world's most extensive record of early crustal evolution (3900-3600 Ma). Precambrian Research, 78, 139.
Nutman, A.P., Friend, C.R.L., Barker, S.L.L. and McGregor, V.R. (2004) Inventory and assess-ment of PalaeoArchean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Research, 135, 281314.
Ordonez-Calderon, J.C., Polat, A., Fryer, B.J., Gagnon, J.E., Raith, J.G. and Appel, P.W.U. (2008) Evidence for HFSE and REE mobility during calc-silicate metasomatism, Mesoarchean (c.3075 Ma) Ivisaartoq greenstone belt, southern West Greenland. Precambrian Research, 161, 317340.
Ordonez-Calderon, J.C., Polat, A., Fryer, B.J., Appel, P.W.U., van Gool, J.A.M., Dilek, Y. and Gagnon, J.E. (2009) Geochemistry and geodynamic origin of the Mesoarchean Ujarassuit and Ivisaartoq greenstone belts, SW Greenland. Lithos, 113, 133157.
Ordonez-Calderon, J.C., Polat, A., Fryer, B. and Gagnon, J.E. (2011) Field and geochemical char-acteristics of Mesoarchean to Neoarchean volcanic rocks in the Store green-stone belt, SW Greenland: evidence for accretion of intra-oceanic volcanic arcs. Precambrian Research, 184, 2442.
Palme, H. and O'Neill, H.C. (2003) Compositional estimates of mantle composition. Pp. 138 in: The Mantle and Core, vol. 2 (Carlson, R.W., editor). Elsevier-Pergamon, Oxford, UK.
Pin, C. and Zalduegui, J.S. (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Analytica Chimica Ada, 339, 7989.
Polat, A. and Hofmann, A.W. (2003) Alteration and geochemical patterns in the 3.7—3.8 Ga Isua greenstone belt, West Greenland. Precambrian Research, 126, 197218.
Polat, A., Hofmann, A.W. and Rosing, M.T. (2002) Boninite-like volcanic rocks in the 3.7—3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth. Chemical Geology, 184, 231254.
Polat, A., Appel, P.W., Frei, R., Pan, Y., Dilek, Y., Ordonez-Calderon, J.C. and Raith, J.G. (2007) Field and geochemical characteristics of the Mesoarchean (∼ 3075 Ma) Ivisaartoq greenstone belt, southern West Greenland: Evidence for seafloor hydrothermal alteration in supra-subduction oceanic crust. Gondwana Research, 11, 6991.
Polat, A., Frei, R., Schersten, A. and Appel, P.W. (2010) New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskentesset anorthosite complex, SW Greenland. Chemical Geology, 277, 120.
Rapp, R.P. and Watson, E.B. (1995) Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36, 891931.
Rehnstrom, E.F. 2011. Geological Map of Greenland 1:100000, Kapisillit 64 V.2 Syd. Geological Survey of Denmark and Greenland, Copenhagen.
Scherer, E., Miinker, C. and Mezger, K. (2001) Calibration of the lutetium—hafnium clock. Science, 293, 683687.
Schersten, A., Stendal, H. and Na;raa, T. (2008) Geochemistry of greenstones in the Tasiusarsuaq terrane, southern West Greenland. Geological Survey of Denmark and Greenland Bulletin, 15, 6972.
Schumacher, J.C, van Hinsberg, V.J. and Keulen, N. (2011) Metamorphism in supracrustal and ultramafic rocks in southern West Greenland and South-West Greenland 64.-61.5° N. Danmarks og Gronlands Geologiske Undersogelse Rapport 2011/06. GEUS, Copenhagen, 29 pp.
Soderlund, U., Patchett, P.J., Vervoort, J.D. and Isachsen, C.E. (2004). The 176 Lu decay constant determined by Lu—Hf and U—Pb isotope systema-tics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311324.
Souders, A.K., Sylvester, P.J. and Myers, J.S. (2013) Mantle and crustal sources of Archean anorthosite: a combined in-situ study of Pb-Pb and Lu-Hf in zircon. Contributions to Mineralogy and Petrology, 165, 124.
Svahnberg, H. (2012) Deformation and chemical signatures of anorthosites—Examples from southern West Greenland and south-central Sweden. Meddelanden fran Stockholms universitets Institution for geologiska vertenskaper No. 340. Doctoral Thesis, Stockholm University, Sweden.
Szilas, K., van Hinsberg, V.J., Kisters, A.F., Kokfelt, T.F., Schersten, A. and Windley, B.F. (2011) Remnants of Mesoarchaean oceanic crust in the Tartoq Group, South-West Greenland. Geological Survey of Denmark and Greenland Bulletin, 23, 5760.
Szilas, K., Hoffmann, J.E., Schersten, A., Rosing, M.T., Windley, B.F., Kokfelt, T.F. and Miinker, C. (2012a) Complex calc-alkaline volcanism recorded in Mesoarchaean supracrustal belts north of Frederikshab Isblink, southern West Greenland: Implications for subduction zone processes in the early Earth. Precambrian Research, 208, 90123.
Szilas, K., Nteraa, T., Schersten, A., Stendal, H., Frei, R., van Hinsberg, VJ. and Rosing, M.T. (20126) Origin of Mesoarchaean arc-related rocks with boninite/komatiite affinities from southern West Greenland. Lithos, 144, 2439.
Szilas, K., Hoffmann, J.E., Schersten, A., Kokfelt, T.F. and Miinker, C. (2013a) Archaean andesite petrogenesis: Insights from the GrEedefjord Supracrustal Belt, southern West Greenland. Precambrian Research, 236, 115.
Szilas, K., van Hinsberg, V.J., Kisters, A.F.M., Hoffmann, J.E., Windley, B.F., Kokfelt, T.F., Schersten, A., Frei, R., Rosing, M.T. and Miinker, C. (20136) Remnants of arc-related Mesoarchaean oceanic crust in the Tartoq Group of SW Greenland. Gondwana Research, 23, 436451.
Szilas, K., van Hinsberg, V.J., Creaser, R.A. and Kisters, A.F.M (2014) The geochemical composition of serpentinites in the Mesoarchaean Tartoq Group, SW Greenland: Harzburgitic cumulates or melt-modified mantle? Lithos, 198-199, 103-116.
Szilas, K, Kelemen, P.B. and Rosing, M.T. (2015) The petrogenesis of ultramafic rocks in the >3.7 Ga Isua supracrustal belt, southern West Greenland: Geochemical evidence for two distinct magmatic cumulate trends. Gondwana Research, 28, 565580.
Walton, BJ. (1976) Geological Map 1:50000 64 V.2 37b. Gronlands Geologiske Undersogelse, Copenhagen.
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.
Weyer, S., Miinker, C, Rehkamper, M. and Mezger, K. (2002) Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chemical Geology, 187, 295313.
Windley, B.F. and Garde, A.A. (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland: Crustal growth in the Archaean with modern analogues. Earth Science Reviews, 93, 130.
Yi, K, Bennett, V.C., Nutman, A.P. and Lee, S.R. (2014) Tracing Archaean terranes under Greenland's Icecap: U—Th—Pb—Hf isotopic study of zircons from melt-water rivers in the Isua area. Precambrian Research, 255, 900921.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mineralogical Magazine
  • ISSN: 0026-461X
  • EISSN: 1471-8022
  • URL: /core/journals/mineralogical-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
EXCEL
Supplementary materials

Szilas et al. supplementary material
Table 1

 Excel (55 KB)
55 KB
EXCEL
Supplementary materials

Szilas et al. supplementary material
Table 2

 Excel (33 KB)
33 KB
EXCEL
Supplementary materials

Szilas et al. supplementary material
Table 3

 Excel (303 KB)
303 KB
PDF
Supplementary materials

Szilas et al. supplementary material
Appendix A

 PDF (1.7 MB)
1.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 2 *
Loading metrics...

Abstract views

Total abstract views: 72 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 26th September 2018. This data will be updated every 24 hours.