Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-06T10:11:47.180Z Has data issue: false hasContentIssue false

The synthetic analogue of kotulskite and its solid-solution series with selected elements

Published online by Cambridge University Press:  31 January 2025

Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic
Jan Kamenský
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
Marek Tuhý
Affiliation:
Czech Geological Survey, Geologická 6, 152 00, Prague 5, Czech Republic Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43, Prague 2, Czech Republic
*
Corresponding author: Anna Vymazalová; Email: anna.vymazalova@geology.cz

Abstract

The solubility of Ag, As, Bi, Cu, Pb, Sb and Sn in the synthetic analogue of kotulskite (PdTe) was studied experimentally at 400°C (for Bi at 500°C). The extent of the solid solution was studied on the line PdTe–PdA with a compositional range Pd(Te1–xAx) with x = 0.1, 0.2, 0.4 and 0.6 and A = Ag, As, Bi, Cu, Pb, Sb and Sn. For the purpose of this study the silica-glass tube method was used. The experimental products were evaluated by means of powder X-ray diffraction analysis, reflected light and electron microscopy. Kotulskite does not dissolve Ag. It may dissolve up 3 at.% As, up to 5.6 at.% Cu, up to 20 at.% Sn and up to 30 at.% Pb. A complete solid solution between kotulskite (PdTe) – sudburyite (PdSb) and kotulskite (PdTe) – sobolevskite (PdBi) as suggest from natural occurrences has not been confirmed within this study. There is a composition gap between Pd0.99(Te0.21Bi0.80)Σ1.01 (PdTe dissolving 40.3 at.% Bi) and Pd1.00(Bi0.97Te0.03)Σ1.00 (PdBi dissolving 1.6 at.% Te). Also, there seems to be a gap between Pd1.00(Te0.18Sb0.82)Σ1.00 (PdTe dissolving 41.1 at.% Sb) and PdSb. The Cu substitutes for Pd whereas As, Bi, Pb, Sb and Sn substitute for Te in the crystal structure of kotulskite. Assessed solid solution series should be sought in assemblages with other platinum-group minerals and known Pd tellurides, likely in magmatic Cu–Ni–PGE mineral deposits, associated with mafic and ultramafic igneous rocks.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: David Hibbs

References

Arnason, J.G., Bird, D.K., Bernstein, S. and Kelemen, P.B. (1997) Gold and platinum-group element mineralization in the Kruuse Fjord gabbro complex, east Greenland. Economic Geology, 92, 490501.Google Scholar
Barkov, A.Y., Laflamme, J.H.G., Cabri, L.J. and Martin, R.F. (2002) Platinum-group minerals from the Wellgreen Ni–Cu–PGE deposit, Yukon, Canada. The Canadian Mineralogist, 40, 651669.Google Scholar
Barkov, A.Y., Shvedov, G.I., Polonyankin, A.A., Martin, R.F. and O’Driscoll, B. (2017) New and unusual Pd–Tl-bearing mineralization in the Anomal’nyi deposit, Kondyor concentrically zoned complex, northern Khabarovskiy kray, Russia. Mineralogical Magazine, 81, 679688.Google Scholar
Barkov, A.Y., Nikiforov, A.A., Barkova, L.P. and Martin, R.F. (2022) Occurrences of Pd–Pt bismuthotellurides and a phosphohedyphane–like phase in sulfide veins of the Monchepluton layered complex, Kola Peninsula, Russia. Minerals, 12, .Google Scholar
Barkov, A.Y., Nikulin, I.I., Nikiforov, A.A., Lobastov, B.M., Silyanov, S.A. and Martin, R.F. (2021) Atypical mineralization involving Pd–Pt, Au–Ag, REE, Y, Zr, Th, U, and Cl–F in the Oktyabrsky Deposit, Noril’sk Complex, Russia. Minerals, 11, .Google Scholar
Bayliss, P. (1990) Revised unit–cell dimensions, space group, and chemical formula of some metallic minerals. The Canadian Mineralogist, 28, 751755.Google Scholar
Beaudoin, G., Laurent, R. and Ohnenstetter, D. (1990) First report of platinum-group minerals at Blue lake Labrador Trough, Quebec. The Canadian Mineralogist, 28, 409418.Google Scholar
Bhatt, Y.C. and Schubert, K. (1979) Kristallstruktur von PdBi.r. Journal of the Less-Common Metals, 64, 1724.Google Scholar
Bruker, A.X.S. (2014) Topas 5, computing program. Bruker AXS Gmbh, Karlrsuhe, GermanyGoogle Scholar
Cabri, L.J. (2002) The platinum-group minerals. Pp. 13129 In: The geology, mineralogy and mineral beneficiation of platinum-group elements (Cabri, L.J., editor). Canadian Institute of Mining and Metallurgy, Vol. 54.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1976) The mineralogy of the platinum-group elements from some copper–nickel deposits of the Sudbury area, Ontario. Economic Geology, 71, 11591195.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1979) Mineralogy of samples from Lac des Iles area, Ontario. Canada Centre for Mineral and Energy Technology Report, Google Scholar
Cabri, L.J., Rowland, J.F., Laflamme, J.H.G. and Stewart, J.M. (1979) Keithconnite, telluropalladinite and other Pd–Pt tellurides from the Stillwater Complex, Montana. The Canadian Mineralogist, 17, 589594.Google Scholar
Cabri, L.J., Harris, D.C. and Weiser, T.W. (1996) The mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Exploration and Mining Geology, 5, 73167.Google Scholar
Cook, N.J., Ciobanu, C.L., Merkle, R.K.W. and Bernhardt, H.-J. (2002) Sobolevskite, taimyrite, and Pt2CuFe (tulameenite?) in complex massive talnakhite ore, Talnakh Orefield, Russia. The Canadian Mineralogist, 40, 329340.Google Scholar
Criddle, A.J. and Stanley, C.J. (1993) Quantitative Data File for Ore Minerals, 3rd Edition. Chapman and Hall, London, pp.Google Scholar
El-Boragy, M. and Schubert, K. (1971) Uber einige Varianten der NiAs-Familie in Mischungen des Palladiums mit B-Elementen. Zeitschrift für Metallkunde, 62, 314323.Google Scholar
El Ghorfi, M., Oberthür, T., Melcher, F., Lüders, V., El Boukhari, A., Maacha, L., Ziadi, R. and Baoutoul, H. (2006) Gold–palladium mineralization at Bleïda Far West, Bou Azzer–El Graara Inlier, Anti–Atlas, Morocco. Mineralium Deposita, 41, 549564.Google Scholar
Evstigneeva, T.L., Genkin, A.D. and Kovalenker, V.A. (1976) Sobolevskite, a new bismuthide of palladium, and the nomenclature of minerals of the system PdBi–PdTe–PdSb. International Geological Review, 18, 856866. [Translation of Evstigneeva et al. (1975) Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 104, 568–579].Google Scholar
Evstigneeva, P.V., Nickolsky, M.S., Geringer, N.V., Vymazalová, A., Nekrasov, A.N. and Chareev, D.A. (2019) Pt- and Pd-bismuthotellurides: phase relations in the Pt–Bi–Te and Pd–Bi–Te systems. Proceedings of the 15th Biennial SGA Meeting, 27–30 August 2019, Glasgow, UK.Google Scholar
Genkin, A.D., Zhuravlev, N.N. and Smirnova, E.M. (1963) Moncheite and kotulskite – new minerals – and the composition of michenerite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92, 3350. [in Russian]Google Scholar
Grokhovskaya, T.L., Distler, V.V., Klyunin, S.F., Zakharov, A.A. and Laputina, I.P. (1992) Low–sulfide platinum group mineralization of the Lukkulaisvaara pluton, northern Karelia. International Geology Review, 34, 503520.Google Scholar
Grokhovskaya, T.L., Lapina, M.I., Ganin, V.A. and Grinevich, N.G. (2005) PGE mineralization in the Burakovsk layered complex, southern Karelia, Russia. Geology of Ore Deposits, 47, 283308.Google Scholar
Gronvold, F. and Rost, E. (1956) On the sulfides, selenides and tellurides of palladium, Acta Chemica Scandinavica, 10, 16201634.Google Scholar
Kingston, G.A. (1966) The occurrence of platinoid bismuthotellurides in the Merensky Reef at Rustenburg platinum mine in the western Bushveld. Mineralogical Magazine, 35, 815835.Google Scholar
Konnikov, E.G., Orsoev, D.A., Veselovskii, N.N. and Glotov, A.I. (1993) Distribution of platinum group elements in the “Ore bed of Sopcha” of the Monchegorsk layered pluton. Russian Geology and Geophysics, 34, 98104.Google Scholar
Kovalenker, V.A., Laputina, I.P., Vyal’sov, L.N., Genkin, A.D. and Evstigneeva, T.L. (1973) Tellurium minerals in copper–nickel sulfide ores at Talnakh and Oktyabr (Noril’sk district). International Geology Review, 15, 12841294.Google Scholar
Lavrov, O.B. and Kuleshevich, LV. (2017) Platinoids in the Kaalamo Differentiated Massif in the Northern Ladoga Region, Karelia, Russia. Geology of Ore Deposits, 59, 632641.Google Scholar
Mulja, T. and Mitchell, R.H. (1991) The Geordie Lake Intrusion, Coldwell Complex, Ontario; a palladium–and tellurium–rich disseminated sulfide occurrence derived from an evolved tholeiitic magma. Economic Geology, 86, 10501069.Google Scholar
Okamoto, H. (1994) The Bi-Pd (Bismuth-Palladium) system. Journal of phase equilibria, 15, 191194.Google Scholar
PANalytical, B.V. (2012) HighScore 3.0. Almelo, The Netherlands.Google Scholar
Shaybekov, R.I., Makeev, B.A., Kononkova, N.N., Isaenko, S.I. and Е.М, Tropnikov. (2021) Palladium tellurides and bismuthtellurides in sulfide copper–nickel ores of the Savabeisky ore occurrence (Nenets Autonomous District, Russia). Lithosphere, 21, 574594.Google Scholar
Sluzhenikin, S.F. (2011) Platinum–copper–nickel and platinum ores of Noril’sk region and their ore mineralization. Russian Journal of General Chemistry, 81, 12881301.Google Scholar
Spiridonov, E.M., Orsoev, D.A., Ariskin, A.A., Nikolaev, G.S., Kislov, E.V., Korotaeva, N.N. and Yapaskurt, V.O. (2019) Hg- and Cd-bearing Pd, Pt, Au, and Ag minerals in sulfide–bearing mafic and ultramafic rocks of the Yoko–Dovyren intrusion in the Baikalides of the northern Baikal area. Geochemistry International, 57, 4255.Google Scholar
Spiridonov, E.M., Belyakov, S.N., Korotaeva, N.N., Egorov, K.V., Ivanova, Y.A., Naumov, D.I. and Serova, A.A. (2020) Menshikovite Pd3Ni2As3 and associating minerals of sulfide ores at the eastern flank of the Oktyabrsky deposit (Noril’sk Ore Field). Moscow University Geology Bulletin, 75, 472480.Google Scholar
Tolstykh, N.D. (2008) PGE mineralization in marginal sulfide ores of the Chineisky layered intrusion, Russia. Mineralogy and Petrology, 92, 283306.Google Scholar
Tolstykh, N.D., Zhitova, L.M., Shapovalova, M.O. and Chayka, I.F. (2019) The evolution of the ore–forming system in the low sulfide horizon of the Noril’sk 1 intrusion, Russia. Mineralogical Magazine, 83, 673694.Google Scholar
Vymazalová, A. and Drábek, M. (2010) The system Pd–Sn–Te at 400°C and mineralogical implications. II. The ternary phases. The Canadian Mineralogist, 48, 10511058.Google Scholar
Vymazalová, A. and Drábek, M. (2011) The Pd–Pb–Te system: phase relations involving pašavaite and potential minerals. The Canadian Mineralogist, 49, 16791686.Google Scholar
Vymazalová, A., Laufek, F., Kristavchuk, A.V., Chareev, D.A. and Drábek, M. (2015) The system Ag–Pd–Te: phase relations and mineral assemblages. Mineralogical Magazine, 79, 18131832.Google Scholar
W–S, Kim. and G.Y, Chao. (1991) Phase relations in the system Pd–Sb–Te. The Canadian Mineralogist, 29, 401409.Google Scholar
Watkinson, D.H. and Ohnenstetter, D. (1992) Hydrothermal origin of platinum-group mineralization in the Two Duck Lake intrusion, Coldwell Complex, northwestern Ontario. The Canadian Mineralogist, 30, 121136.Google Scholar
Yushko-Zakharova, O.Y., Avdonin, A.S., Bykov, V.P., Kulagov Ye, A., Lebedeva, S.I., Chernyayev, L.A. and Yurkina, K.V. (1972). Composition of platinum minerals in copper–nickel ores of the Talnakh and Noril’sk deposits. Mineralogical Studies, 2nd Edition. Moscow: IMGRE.Google Scholar
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. and Rehme, S.J. (2019) Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. Journal of Applied Crystallography, 52, 918925.Google Scholar
Zhuravlev, N.N. (1957) Structure of superconductors. X. Thermal, microscopic and X-ray investigation of the bismuth–palladium system. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 5, 10641072.Google Scholar