1. Introduction
Let
$X$
be a compact connected Riemann surface. Since the fundamental group
$\pi _1(X)$
of
$X$
is finitely presented, and
${\rm GL}(r,{\mathbb C})$
is an affine algebraic group defined over
$\mathbb C$
, the space of homomorphisms
${\rm Hom}(\pi _1(X),\, {\rm GL}(r,{\mathbb C}))$
is an affine complex algebraic variety. The adjoint action of
${\rm GL}(r,{\mathbb C})$
on itself produces an action of
${\rm GL}(r,{\mathbb C})$
on
${\rm Hom}(\pi _1(X),\, {\rm GL}(r,{\mathbb C}))$
. The moduli space

of equivalence classes of representations has an algebraic symplectic structure which was constructed by Goldman [Reference GoldmanGol] and Atiyah and Bott [Reference Atiyah and BottAtBo]. Let
${\mathcal M}_C(r)$
be the moduli space of holomorphic connections on
$X$
of rank
$r$
. This moduli space also has an algebraic symplectic structure. The Riemann–Hilbert correspondence identifies
${\mathcal M}_R(r)$
with
${\mathcal M}_C(r)$
. The Riemann–Hilbert correspondence is only complex analytic and not algebraic, and consequently the identification between
${\mathcal M}_R(r)$
and
${\mathcal M}_C(r)$
is complex analytic but not algebraic. However, the transport of the symplectic form on
${\mathcal M}_R(r)$
to
${\mathcal M}_C(r)$
by this complex analytic identification actually remains algebraic. This paper is divided into two parts. The first part is related to the fact that
${\mathcal M}_C(r)$
has an algebraic symplectic structure. The second part is related to the fact that the Riemann–Hilbert correspondence is not algebraic.
First, let us discuss on the first part. Fix finitely many distinct points
$x_1,\, \ldots ,\, x_n$
of
$X$
and denote the divisor
$x_1 + \cdots +x_n$
on
$X$
by
$D$
. Consider logarithmic connections on
$X$
of rank
$r$
whose polar part is supported on
$D$
. The corresponding moduli space is known to have a Poisson structure. This Poisson structure is not symplectic if
$n\, \gt \, 0$
.
It is shown in Corollary 4.24 that the Poisson structure on the moduli space of logarithmic connections can be elevated to a symplectic structure by introducing frames, over the points of
$D$
, of the holomorphic vector bundle underlying the logarithmic connections. This entails construction of the moduli space of framed logarithmic connections that occupy a large fraction of the article. The key theorem in the first part of this paper is Theorem4.21, which establishes the
$d$
-closedness of the canonical nondegenerate
$2$
-form on the moduli space of framed connections. This produces a Poisson structure on the moduli space of logarithmic connections; a geometric invariant theoretic construction of this moduli space was given by Nitsure [Reference NitsureNit].
In [Reference Biswas, Logares and Peón-NietoBLP1] and [Reference Biswas, Logares and Peón-NietoBLP2], generalized Higgs bundles on
$X$
were considered where the Higgs fields are allowed to have poles along a fixed divisor
$D$
on
$X$
. The corresponding moduli spaces have a Poisson structure which was constructed independently by Bottacin [Reference BottacinBo] and Markman [Reference MarkmanMark]. It was shown in [Reference Biswas, Logares and Peón-NietoBLP1] and [Reference Biswas, Logares and Peón-NietoBLP2] that by imposing frames of the vector bundles underlying the Higgs bundles, over
$D$
, these Poisson structures can be enhanced to symplectic structure. The present work is an analogue of [Reference Biswas, Logares and Peón-NietoBLP2] for connections in place of Higgs fields.
The moduli space of logarithmic parabolic connections was constructed in [Reference Inaba, Iwasaki and SaitoIIS] and [Reference InabaIna]. If we fix eigenvalues of residues of logarithmic parabolic connections, then the moduli space of logarithmic parabolic connections with the fixed eigenvalues of residues has a canonical symplectic structure. In § 4.6, we discuss a relationship between the framed logarithmic connections and the logarithmic parabolic connections. As an outcome, it is proved that the moduli space of logarithmic parabolic connections has a canonical Poisson structure, whose restriction to the locus of fixed eigenvalues of residues induces the symplectic structure due to [Reference Inaba, Iwasaki and SaitoIIS] and [Reference InabaIna] (Corollary 4.25). Moreover, this Poisson structure satisfies the condition that the forgetful map to the moduli space of logarithmic connections, that forgets the parabolic structure, is a Poisson map. The restriction of this Poisson map to the loci of fixed eigenvalues of residues is an isomorphism if the eigenvalues are generic, and it produces a resolution of singularities if the eigenvalues are special.
Now let us discuss the second part. In this part, we focus on the algebraic moduli space of logarithmic parabolic connections such that eigenvalues of residues are fixed. We call this moduli space the de Rham moduli space. This moduli space is related to other moduli spaces having rich geometric structures. First, there is the moduli space of equivalence classes of representations of the fundamental group
$\pi _1(X\setminus D)$
with fixed local monodromy data around the points of
$D$
, which is known as the character variety. The relationship between the moduli space of logarithmic parabolic connections and the character variety is given by the Riemann–Hilbert correspondence. In the framework of [Reference Inaba, Iwasaki and SaitoIIS] and [Reference InabaIna], the Riemann–Hilbert correspondence gives a simultaneous family of holomorphic maps from the de Rham moduli spaces to the character varieties over all the eigenvalues of residues. This Riemann–Hilbert morphism is biholomorphic when the eigenvalues of residues are generic, and it is an analytic resolution of singularities when the eigenvalues of residues are special. Note that the characteristic variety in [Reference Inaba, Iwasaki and SaitoIIS] and [Reference InabaIna] is not smooth for special eigenvalues of residues, but its singularities actually well explain the geometry of special solutions of the isomonodromy equation (see [Reference Saito and TerajimaSaTe]). Simpson introduced in [Reference SimpsonSim1] the notion of a filtered local system which bijectively corresponds to the parabolic connections under the assumption that the eigenvalues of residues are fixed. In [Reference YamakawaYa], Yamakawa constructed the algebraic moduli space of filtered local systems, which is actually nonsingular. We call it the Betti moduli space. Yamakawa proved in [Reference YamakawaYa] that the Riemann–Hilbert morphism is a biholomorphism between the de Rham moduli space and the Betti moduli space. Secondly, there is the moduli space of logarithmic parabolic Higgs bundles with fixed eigenvalues of residues together with stability data. We call this moduli space the Dolbeault moduli space. The relation between these moduli spaces is given by the logarithmic version of the non-abelian Hodge theory constructed by Simpson in [Reference SimpsonSim1].
In the case where the polar divisor
$D$
is empty, Simpson introduced in [Reference SimpsonSim2] and [Reference SimpsonSim3], the three moduli spaces in his framework: the de Rham moduli space, the Dolbeault moduli space and the Betti moduli space. These are algebraic moduli spaces and are related to each other by the non-abelian Hodge theory and the Riemann–Hilbert correspondence. However, the algebraic structures of these moduli spaces are very different. In this paper, we consider the logarithmic version of these three moduli spaces. First, our Betti moduli space is affine when the eigenvalues of the residues are generic. So the transcendence degree of its affine coordinate ring is equal to the dimension of the moduli space. On the other hand, the transcendence degree of the ring of global algebraic functions on the Dolbeault moduli space is exactly the half of the dimension of the moduli space, a fact which is deduced from the properness of the Hitchin map. In some cases, the global algebraic functions on the de Rham moduli spaces are simply the constant scalars [Reference Biswas and RaghavendraBiRa]. For general logarithmic connections, the coefficients of the characteristic polynomial of residue at each singular point give algebraic functions on the moduli space. The main theorem of the second part of this paper is Theorem5.22, which states that the transcendence degree of the ring of global algebraic functions on our de Rham moduli space is less than or equal to that of our Dolbeault moduli space. In particular, our de Rham moduli space is not affine (this was announced in [Reference Biswas, Inaba, Komyo and SaitoBIKS]). To be precise, there was in fact an inadequate argument on finite generation of a graded ring in the outline of the proof of [Reference Biswas, Inaba, Komyo and SaitoBIKS, Theorem 10]. In this paper, we reconstruct a proof of it through a refinement of the statement (see Theorem5.22). As a consequence of Theorem5.22, the Riemann–Hilbert morphism, which appears in [Reference Inaba, Iwasaki and SaitoIIS], [Reference InabaIna], is not algebraic in the logarithmic case (see Corollary 5.25).
Regarding the above three moduli spaces, we are mostly interested in the case where
$X$
is defined over the field of complex numbers. However, it is also worth considering the case where the base field is of positive characteristic. When the base field is of positive characteristic, N. Katz introduced the notion of
$p$
-curvature in [Reference KatzKa], from which Laszlo and Pauly derived the proper Hitchin map on a de Rham moduli space (see [Reference Laszlo and PaulyLaPa]). By the investigation of the Hitchin map on a de Rham moduli space by Groechenig in [Reference GroechenigGroe], the ring of global algebraic functions on the de Rham moduli space of connections without pole has the same transcendence degree as that of the ring of global algebraic functions on the Dolbeault moduli space, when the characteristic of the base field is positive. So the similar inequality as in Theorem5.22 for connections without pole becomes the equality for curves when the base field is of positive characteristic, while the inequality is strict for curves of higher genus defined over the field of complex numbers (see [Reference Biswas and RaghavendraBiRa]).
Analogous to the regular case in [Reference BiswasBi], we can also show in the logarithmic case that the pullback, via the Riemann–Hilbert morphism, of the canonical algebraic symplectic form on the Betti moduli space coincides with that on the de Rham moduli space. Although not stated explicitly, it can also be found in the proof of [Reference InabaIna, Proposition 7.3]. This was also proved in the earlier work in the rank two case by Iwasaki [Reference IwasakiIw1]. In fact, the main point of [Reference IwasakiIw1] is the construction of the isomonodromic lift of the family of symplectic forms. A more conceptual construction of the isomonodromic lift of the family of symplectic forms was constructed by Komyo in [Reference KomyoKo], from the moduli theoretic point of view, by using the cohomological description of the isomonodromic deformation given in [Reference Biswas, Heu and HurtubiseBHH].
Boalch proved the following: The monodromy map between any moduli space of unramified irregular singular connections of any rank on a curve of genus zero and its corresponding wild character variety is symplectic structure preserving [Reference BoalchBo1, p. 182, Theorem 6.1] (see also [Reference BoalchBo2]). The algebraic moduli space of unramified irregular singular connections and its algebraic symplectic structure are constructed in [Reference Inaba and SaitoInSa].
Now we give a brief outline of the contents of this paper.
§ 2 provides general notions of framed principal
$G$
-bundles on a compact Riemann surface
$X$
and also of framed
$G$
-connections.
From § 3, we restrict to the case of
$G\,=\,{\rm GL}(r,\mathbb{C})$
. §§ 3.1 provides the formulation of moduli problem for framed connections. §§ 3.2 provides the construction of the moduli space of framed
${\rm GL}(r,\mathbb{C})$
-connections as a Deligne–Mumford stack and also the irreducibility of its open substack where the underlying framed bundles are simple.
§ 4 is devoted to the construction of a canonical
$2$
-form on the moduli space of framed connections and also to prove its
$d$
-closedness. The main technical part is §§ 4.3. Over the open subset where the underlying framed bundles are simple, the canonical
$2$
-form on the moduli space of framed connections becomes
$d$
-closed (Propositions Proposition 4.7 and 4.17). Its proof is essentially reduced to the
$d$
-closedness of the canonical
$2$
-form on the character variety constructed by Goldman in [Reference GoldmanGol] when the genus of
$X$
is greater than
$1$
. When the genus of
$X$
is zero or one, the proof of
$d$
-closedness is reduced to that for the form on the moduli space of parabolic connections given in [Reference InabaIna]. In §§ 4.4, we prove the
$d$
-closedness of the canonical
$2$
-form on the entire moduli space of simple framed connections (see Theorem4.21), which is the main theorem of the first half. Its proof is reduced to Propositions 4.7 and 4.17 through an argument for extending the polar divisor. §§ 4.5 and 4.6 are immediate consequences of Theorem4.21. We can see that the Poisson structure on several known moduli spaces of connections can be reconstructed from the symplectic structure on the moduli space of framed connections.
§ 5 is devoted to establishing an upper bound for the transcendence degree of the ring of global algebraic functions on the moduli space of parabolic connections. In §§ 5.1, we recall the notions of parabolic connections and parabolic Higgs bundles, which work over the base field of arbitrary characteristic. In §§ 5.2, we prove in Proposition 5.14 that the locus of non-simple underlying quasi-parabolic bundles has codimension at least
$2$
in the moduli space of parabolic connections. The proof is carried out by constructing a parameter space of non-simple quasi-parabolic bundles and a compatible connections on them. The essential part is to bound the dimension of the parameter space of non-simple quasi-parabolic bundles (see Propositions 5.10, 5.11, 5.12 and 5.13). Since we need to verify many cases, the proofs of these propositions contain a considerable amount of calculation, but each step is checked by relatively elementary arguments. By virtue of Proposition 5.14, the ring of global algebraic functions on the moduli space of parabolic connections can be replaced with that on the open loci where the underlying quasi-parabolic bundles are simple. §§ 5.3 provides the main estimate for the transcendence degree of the global algebraic functions on the moduli space of parabolic connections. Over the moduli space of simple quasi-parabolic bundles, we construct in Proposition 5.21 something like a relative compactification of a Deligne–Hitchin family, whose generic fiber is a relative compactification of the moduli space of compatible parabolic connections and whose special fiber is that of parabolic Higgs bundles. This family gives a family of sheaves of graded rings over the moduli space of simple quasi-parabolic bundles. A rough idea of the proof of Theorem5.22 is to estimate the transcendence degree of the ring of global sections of this sheaf of graded rings. In order to correct the flaw in the proof of [Reference Biswas, Inaba, Komyo and SaitoBIKS, Theorem 10], we actually consider the subring generated by a suitable transcendence basis of the graded ring over a generic fiber and compare it with that on the special fiber.
2. Framed
$G$
-connections
Let
$X$
be a compact connected Riemann surface, and let
$x_1,\, \ldots ,\, x_n$
be finitely many distinct points on
$X$
. Let

be the reduced effective divisor on
$X$
. For notational convenience, the subset
$\{x_1,\,\ldots ,\, x_n\}\, \subset \, X$
will also be denoted by
$D$
. Denote by
$K_X$
the holomorphic cotangent bundle of
$X$
.
2.1 Framed principal
$G$
-bundles
Let
$G$
be a connected complex reductive affine algebraic group. The Lie algebra of
$G$
will be denoted by
$\mathfrak g$
. Let

be a holomorphic principal
$G$
-bundle over
$X$
. For any point
$x\,\in \, X$
, the fiber
$p^{-1} (x) \subset E_G$
will be denoted by
$(E_G)_x$
.
Definition 2.1 (See [Reference Biswas, Logares and Peón-NietoBLP2,p. 5]).For each point
$x$
of the subset
$D$
in (2.1), fix a closed complex Lie proper subgroup

A framing of
$E_G$
over the divisor
$D$
is a map

such that
$\phi (x) \,\in \,(E_G)_x/ H_x$
for every
$x \,\in \, D$
. A framed principal
$G$
-bundle on X is a holomorphic principal
$G$
-bundle
$E_G$
on X equipped with a framing over
$D$
.
A framing
$\phi$
of
$E_G$
produces a reduction of structure group

to
$H_x$
at each point
$x\, \in \, D$
, where
$q_x\, :\, (E_G)_x\, \longrightarrow \, (E_G)_x/ H_x$
is the quotient map.
2.2 Adjoint bundle for framed principal
$G$
-bundles
Let
$T_{E_G/X}\, \longrightarrow \, E_G$
be the relative tangent bundle for the projection
$p$
in (2.2). Using the action of the group
$G$
on
$E_G$
, this relative tangent bundle
$T_{E_G/X}$
is identified with the trivial vector bundle
$E_G\times \mathfrak{g} \,\longrightarrow \, E_G$
with fiber
$\mathfrak{g} \,=\, {\rm Lie}(G)$
. The quotient
$(T_{E_G/X})/G$
is a vector bundle over
$X$
. The above identification of
$T_{E_G/X}$
with
$E_G\times \mathfrak{g}$
produces an identification of
$(T_{E_G/X})/G$
with the vector bundle on
$X$
associated to the principal
$G$
-bundle
$E_G$
for the adjoint action of
$G$
on
$\mathfrak{g}$
. This associated vector bundle, which is denoted by
${\rm ad}(E_G)$
, is called the adjoint bundle for
$E_G$
. The fiber over any
$x \,\in \, X$
for the natural projection
${\rm ad}(E_G) \,\longrightarrow \,X$
will be denoted by
${\rm ad}(E_G)_x$
; it is a Lie algebra isomorphic to
$\mathfrak g$
.
Since the group
$G$
is reductive, its Lie algebra
$\mathfrak g$
admits
$G$
-invariant nondegenerate symmetric bilinear forms. Fix a
$G$
-invariant nondegenerate symmetric bilinear form

on
$\mathfrak{g}$
. From the above construction of
${\rm ad}(E_G)$
it follows that given any point
$z\,\in \, (E_G)_y$
there is a corresponding isomorphism of Lie algebras
$I_z\, :\, \mathfrak{g} \longrightarrow {\rm ad}(E_G)_y$
. Using
$I_z$
, the form
$\sigma$
in (2.4) produces a symmetric nondegenerate bilinear form on the fiber
${\rm ad}(E_G)_y$
; this bilinear form on
${\rm ad}(E_G)_y$
constructed using
$\sigma$
is actually independent of the choice of the point
$z$
because
$\sigma$
is
$G$
-invariant. Let

be the bilinear form constructed as above using
$\sigma$
.
Let
$\phi$
be a framing of
$E_G$
over
$D$
. For every
$x\, \in \, D$
, define the Lie subalgebra

(see (2.3)).
2.3 Framing of
$G$
-connections
Take a holomorphic principal
$G$
-bundle
$E_G$
over
$X$
. Let
$TE_G$
be the holomorphic tangent bundle of
$E_G$
. Consider the action of
$G$
on
$TE_G$
given by the tautological action of
$G$
on
$E_G$
. The quotient

is a holomorphic vector bundle over
$X$
; it is called the Atiyah algebra for
$E_G$
. The Lie bracket operation of the vector fields on
$E_G$
produces a Lie algebra structure on the coherent sheaf associated to
${\rm At} (E_G)$
. There is a short exact sequence of holomorphic vector bundles on
$X$
,

where the projection
$p_{{\rm At}}$
is given by the differential
$dp$
of the map
$p$
in (2.2) [Reference AtiyahAt1]. All the homomorphisms in (2.7) are compatible with the Lie algebra structures. Define a holomorphic vector bundle
${\rm At}_D (E_G)$
over
$X$
as

Then (2.7) gives the following short exact sequence of holomorphic vector bundles on
$X$
:

where
$p_{{\rm At}_D}$
is the restriction, to
${\rm At}_D (E_G)\, \subset \, {\rm At} (E_G)$
, of the homomorphism
$p_{{\rm At}}$
in (2.7).
Definition 2.2 [Reference AtiyahAt1].A holomorphic connection on
$E_G$
is a holomorphic homomorphism of vector bundles

such that
$ p_{{\rm At}} \circ \nabla \,=\,{\rm Id}_{TX}$
, where
$p_{{\rm At}}$
is the projection in (2.7). A
$D$
-twisted holomorphic connection on
$E_G$
(also called a logarithmic connection on
$E_G$
with polar part on
$D$
) is a holomorphic homomorphism of vector bundles

such that
$ p_{{\rm At}_D} \circ \nabla \,=\,{\rm Id}_{TX(-D)}$
, where
$p_{{\rm At}_D}$
is the homomorphism in (2.8).
For a
$D$
-twisted holomorphic connection
$\nabla$
on
$E_G$
, consider the commutative diagram

where
$\iota '$
and
$\iota ''$
are the natural inclusion homomorphisms. For any point
$x\, \in \, D$
, the homomorphism of fibers

vanishes, and hence
$(p_{{\rm At}}\circ \iota ''\circ \nabla )(TX(-D)_x)\,=\, 0$
by the commutativity of the above diagram. Consequently, we have

Note that for any point
$x\, \in \, D$
, using the Poincaré adjunction formula it follows that

The element

is called the residue of the logarithmic connection
$\nabla$
at
$x$
. To describe this residue explicitly, first recall that a holomorphic connection on
$E_G$
furnishes lift of holomorphic vector fields on any open subset
$U$
of
$X$
to
$G$
–invariant holomorphic vector fields on
$E_G\big \vert _{p^{-1}(U)}$
. Similarly, a
$D$
-twisted holomorphic connection
$\nabla$
furnishes lift of holomorphic vector fields on any open subset
$U\, \subset \, X$
, vanishing on
$D\cap U$
, to the
$G$
–invariant holomorphic vector fields on
$E_G\big \vert _{p^{-1}(U)}$
. In other words, these lifts are locally defined
$G$
–invariant holomorphic sections of
$TE_G(-\log p^{-1}(D))$
. Therefore, given a vector field
$v$
defined on a neighborhood of
$x_i\, \in \, D$
of
$X$
, such that
$v(x_i)\,=\,0$
and
$a_{x_i}(v(x_i))\, \not =\, 0$
(see (2.9)), its lift
$\widetilde {v}$
to
$E_G$
for
$\nabla$
may be nonzero on
$p^{-1}(x_i)$
because
$\widetilde {v}$
may be a nonzero vertical vector field on
$p^{-1}(x_i)$
. The residue of
$\nabla$
at
$x_i$
is
$\widetilde {v}(p^{-1}(x_i))/a_{x_i}(v(x_i))\, \in \, {\rm ad}(E_G)_{x_i}$
(see (2.9)).
For any
$x \in D$
, let

be the annihilator of
$\mathcal{H}_x \,\subset \,{\rm ad}(E_G)_x$
, defined in (2.6), with respect to the bilinear form
$\widehat {\sigma }(x)$
in (2.5).
Definition 2.3. A framed
$G$
-connection is a triple of the form
$(E_G,\,\nabla ,\,\phi )$
, where
$(E_G,\, \phi )$
is a framed principal
$G$
-bundle and
$\nabla \,\colon \, TX(-D) \,\longrightarrow \,{\rm At}_D(E_G)$
is a
$D$
-twisted connection such that
${\rm res}_{x} (\nabla )\, \in \, \mathcal{H}^{\perp }_{x} \,\subset \, {\rm ad}(E_G)_{x}$
for every
$x\,\in \, D$
, where
$\mathcal{H}^{\perp }_{x}$
is constructed in (2.10).
2.4 Infinitesimal deformations
Consider the following
$2$
-term complex of sheaves on
$X$
:

Lemma 2.4 (See [Reference Biswas, Logares and Peón-NietoBLP2, Lemma 3.5] and [Reference ChenCh, Proposition 4.4]).Assume that
$H_x\,=\, \{e \}$
for every
$x\,\in \, D$
. The infinitesimal deformations of the framed
$G$
-connection
$(E_G,\, \nabla ,\, \phi )$
are parametrized by the elements of the first hypercohomology
$\mathbb{H}^1(\mathcal{C}_{\bullet })$
of the complex in (2.11).
Let

be a framed
$G$
-connection (see Definition 2.3). Consider the subspace
$\mathcal{H}_x \,\subset \, {\rm ad}(E_G)_x$
in (2.6). Let
${\rm ad}_{\phi }(E_G)$
and
${\rm ad}^n_{\phi }(E_G)$
be the holomorphic vector bundles on
$X$
defined by the following short exact sequences of coherent analytic sheaves on
$X$
:

and

respectively.
Lemma 2.5. The
$D$
-twisted connection
$\widehat {\nabla }$
in (2.12) gives a holomorphic differential operator

If
$\widehat {\nabla }$
is a framed
$G$
-connection, then
$\nabla$
sends the subsheaf
${\rm ad}_{\phi } (E_G)$
in (2.13) to
${\rm ad}^n_{\phi } (E_G) \otimes K_X (D)$
, where
${\rm ad}^n_{\phi }(E_G)$
is constructed in (2.14).
Proof. Let
$s$
be a holomorphic section of
${\rm ad} (E_G)$
defined over an open subset
$U\, \subset \, X$
. Then
$s$
defines a
$G$
–invariant holomorphic vector field on
$p^{-1}(U)\, \subset \, E_G$
which is vertical for the projection
$p$
in (2.2); this vertical vector field on
$p^{-1}(U)$
will be denoted by
$\widetilde s$
. Take any
$t\, \in \, H^0(U,\, TX(-D))$
. Let

be the horizontal lift of
$t$
for the
$D$
-twisted connection
$\widehat \nabla$
in (2.12). Now consider the Lie bracket of vector fields

Note that
$[\widetilde {t},\, \widetilde {s}]$
is
$G$
–invariant because both
$\widetilde {s}$
and
$\widetilde {t}$
are. Furthermore,
$[\widetilde {t}, \, \widetilde {s}]$
is vertical for the projection
$p$
, because
$\widetilde {s}$
is vertical and
$\widetilde {t}$
is
$G$
–invariant. Indeed, for any holomorphic function
$f$
on
$U$
, evidently
$\widetilde {s}(f\circ p)\,=\, 0$
(recall that
$\widetilde s$
is vertical), and we also have that
$\widetilde {t}(f\circ p)$
is
$G$
-invariant, so
$\widetilde {s}(\widetilde {t} (f\circ p))\, =\, 0$
. Consequently,
$[\widetilde {t},\, \widetilde {s}]$
produces a holomorphic section of
${\rm ad}(E_G)$
over
$U$
; this section of
${\rm ad} (E_G)$
over
$U$
will be denoted by
$[t,\, s]'$
. Next, note that a holomorphic function
$f$
on
$U$
satisfies

because
$\widetilde {s} (f\circ p)\,=\, 0$
(recall that
$\widetilde s$
is a vertical vector field). Consequently, there is a homomorphism

uniquely defined by the equation

where
$s$
and
$t$
are locally defined holomorphic sections of
${\rm ad} (E_G)$
and
$TX(-D)$
respectively, while
$\langle -,\, -\rangle$
is the natural pairing
$TX(-D)\otimes K_X(D)\, \longrightarrow \, {\mathcal O}_X$
.
Recall from Definition 2.3 that
${\rm res}_{x} ( \nabla )\, \in \, \mathcal{H}^{\perp }_{x}$
. Therefore, from the property of residues mentioned earlier, it follows immediately that
$\widetilde {t}(x)\, \in \, {\mathcal H}^\perp _x$
for every
$x\, \in \, D$
. Now if
$s$
is a locally defined holomorphic section of
${\rm ad}_{\phi } (E_G)$
, then
$\widetilde {s}(x)\, \in \, {\mathcal H}_x$
. Next, note that

because

for all
$a,\, b,\, c\,\in \, {\rm ad}(E_G)_x$
(this is derived using the given condition on
$\sigma$
that it is
$G$
-invariant). As a consequence of (2.15), the homomorphism
$\nabla$
maps the subsheaf
${\rm ad}_{\phi } (E_G)$
to
${\rm ad}^n_{\phi } (E_G) \otimes K_X (D)$
.
In view of Lemma 2.5, the following
$2$
-term complex of sheaves on
$X$
is obtained:

The next lemma is straightforward to prove.
3. Construction of the moduli space
We now assume that
$G\,=\,{\rm GL}(r,\mathbb{C})$
. Fix a closed complex algebraic proper subgroup
$H_x \,\subsetneq \, G$
for each
$x\in D$
, and set
$H\,=\, \{ H_x \}_{x \in D}$
to be the collection of subgroups indexed by the points of
$D$
. For a framed vector bundle
$(E,\, \phi )$
, if
$E_G$
is the principal
${\rm GL}(r,\mathbb{C})$
-bundle associated to the vector bundle
$E$
, then
${\rm ad}(E_G)\,=\, {\rm End}(E)$
. Define

(see Lemma 2.5).
3.1 Definition of the moduli functors
A framed
${\rm GL}(r,\mathbb{C})$
-connection
$(E,\,\phi , \, \nabla )$
on
$X$
will be called simple if

Definition 3.1. Define a stack
$\mathcal{M}^{H}_{\textrm {FC}}(d)$
of simple framed
${\rm GL}(r,\mathbb{C})$
-connections, for
$H$
, by breaking it into the following two cases, A and B.
-
(A) If
$\mathbb{C}^* \cdot \textrm { Id}\, \not \subset \, H_x$ for some
$x\,\in \, D$ , then define a stack
$\mathcal{M}^{H}_{\textrm {FC}}(d)$ over the category of locally Noetherian schemes over
$\textrm { Spec}\mathbb{C}$ whose objects are quadruples
$(S,\, E,\, \phi \,= \,\{ \phi _{x\times S} \}_{x \in D} ,\, \nabla )$ of the following type.
-
(1)
$S$ is a locally Noetherian scheme over
$\textrm { Spec}\mathbb{C}$ , and
$E\, \longrightarrow \, X\times S$ is a vector bundle of rank
$r$ with
$\deg (E|_{X\times s})\,=\,d$ for any geometric point
$s$ of
$S$ .
-
(2)
$\phi _{x\times S}$ is a section of the structure map
\begin{align*} {\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r} ,\, \, E|_{x\times S} )/ (H_x \times S) \longrightarrow x\times S. \end{align*}
$H_x \times S$ over
$S$ on
${\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\, \, E|_{x\times S})$ is the restriction of the natural transitive action of the group scheme
${\rm GL}(r,\mathbb{C}) \times S$ over
$S$ on
${\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\, \, E|_{x\times S})$ given by the standard action of
${\rm GL}(r,{\mathbb C})$ on
$\mathcal{O}_{x\times S}^{\oplus r}$ . Define a
$S$ -scheme
$\widetilde {S}$ and a map
$\widetilde {S} \,\longrightarrow \,{\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\,\, E|_{x\times S} )$ such that the diagram
is Cartesian. Let
\begin{align*}\widetilde {\phi }_{x \times \widetilde {S}}\,\colon \, \mathcal{O}_{x\times \widetilde {S}}^{\oplus r} \,\xrightarrow {\ \sim \ }\, E_{\widetilde {S}}|_{x\times \widetilde {S}} \end{align*}
$\widetilde {S}\,\longrightarrow \, {\rm Isom}_{S}(\mathcal{O}_{x\times S}^{\oplus r},\, \,E|_{x\times S})$ .
-
(3)
$\nabla \,\colon \, E \,\longrightarrow \, E \otimes K_{X}(D)$ is a relative connection, relative to
$S$ .
-
(4) Let
${\rm res}_{x\times \widetilde {S}}(\nabla _{\widetilde {S}}) \,\in \, {\rm End}(E_{\widetilde {S}})|_{x\times \widetilde {S}}$ be the residue of the induced connection
$\nabla _{\widetilde {S}}\,\colon \,E_{\widetilde {S}}\,\longrightarrow \, E_{\widetilde {S}} \otimes K_{X}(D)$ . Then
$\widetilde {\phi }^{-1}_{x \times \widetilde {S}} \circ {\rm res}_{x\times \widetilde {S}}(\nabla _{\widetilde {S}}) \circ \widetilde {\phi }_{x \times \widetilde {S}} \,\,\in \,\, \mathfrak{h}^{\perp } \otimes \mathcal{O}_{\widetilde {S}}$ .
-
(5) For each point
$s\,\in \, S$ , the framed
${\rm GL}(r,\mathbb{C})$ -connection
$(E_s,\,\phi _s, \, \nabla _s)$ is simple. Recall that
$(E_s,\,\phi _s, \, \nabla _s)$ is simple if
\begin{align*} {\rm ker}\left (H^0(X,\,\mathcal{E}nd_{\phi _s}(E_s) )\, \xrightarrow {\nabla _s}\, H^0( X,\, \mathcal{E}nd_{\phi _s}^n(E_s)\otimes K_X(D))\right ) \,=\,0\, . \end{align*}
A morphism
\begin{align*} (S,\, E,\, \phi ,\,\nabla ) \longrightarrow (S',\, E',\, \phi ',\, \nabla ' ) \end{align*}
$\mathcal{M}^{H}_{\textrm {FC}}$ is a Cartesian square
such that the diagram
is commutative and
$(\widetilde {\phi }'_{x \times \widetilde {S}})^{-1}\circ \sigma _{\widetilde {S}} \circ \widetilde {\phi }_{x \times \widetilde {S}}\, \in \, H_{x} \times \widetilde {S}$ for each
$x \,\in \, D$ .
-
-
(B) If
$\mathbb{C}^* e \,\subset \, H_x$ for all
$x\,\in \, D$ , then define
$\mathcal{M}^{H}_{\textrm {FC}}(d)$ to be the stackification of
${\rm pre-}\mathcal{M}^{H}_{\textrm {FC}}(d)$ (see [ Reference OlssonOls ,Theorem 4.6.5]). Here,
${\rm pre-}\mathcal{M}^{H}_{\textrm {FC}}(d)$ is the fibered category over the category of locally Noetherian schemes over
$\textrm { Spec}\,\mathbb{C}$ whose objects are quadruples
$(S,\, E,\, \phi \,=\, \{ \phi _{x\times S} \}_{x \in D} ,\,\nabla )$ that satisfy (1), (3) and (4) as above as well as the following (2’) and (5’).
-
(2)′:
$\phi _{x\times S}$ is a section of the structure map
\begin{align*} {\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\, \, E|_{x\times S} )/ (H_x \times S) \, \longrightarrow \, x\times S. \end{align*}
$H_x \times S$ , over
$S$ , on
${\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r} ,\, \, E|_{x\times S} )$ is the restriction of the natural transitive group action of the group scheme
${\rm GL}(r,\mathbb{C}) \times S$ over
$S$ on
${\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\,\, E|_{x\times S})$ given by the standard action of
${\rm GL}(r,{\mathbb C})$ on
$\mathcal{O}_{x\times S}^{\oplus r}$ . Define a
$S$ -scheme
$\widehat {S}$ and a map
$\widehat {S} \,\longrightarrow \, {\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r},\, \, E|_{x\times S}) / (\mathbb{C}^* e \times S)$ such that the diagram
is Cartesian. Denote by
$\widehat {\phi }_{x \times \widehat {S}}\,\colon \, \mathbb{P}(\mathcal{O}_{x\times \widehat {S}}^{\oplus r}) \,\stackrel {\sim }{\longrightarrow }\, \mathbb{P}( E_{\widehat {S}}|_{x\times \widehat {S}})$ the isomorphism given by the map
$\widehat {S} \,\longrightarrow \,{\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r}, \,\,E|_{x\times S}) / (\mathbb{C}^* e \times S)$ .
-
(5)′:
$(E_s,\,\phi _s, \, \nabla _s)$ is simple for each point
$s \,\in \, S$ , that is,
\begin{align*} {\rm ker}(H^0(X,\,\mathcal{E}nd_{\phi _s}(E_s) )\, \xrightarrow {\nabla _s}\, H^0( X,\, \mathcal{E}nd_{\phi _s}^n(E_s)\otimes K_X(D))) \,=\, \mathbb{C}. \end{align*}
A morphism
\begin{align*} (S,\, E,\, \phi ,\, \nabla ) \longrightarrow (S',\, E',\, \phi ',\, \nabla ' ) \end{align*}
${\rm pre-}\mathcal{M}^{H}_{\textrm {FC}}(d)$ is a triple
$(\mathcal{L},\, \sigma ,\, \widetilde {\sigma })$ , where
$\mathcal{L}$ is a line bundle on
$S'$ and
$\sigma ,\, \widetilde {\sigma }$ are maps that fit in a Cartesian square
such that the diagram
is commutative and
\begin{align*}(\widehat {\phi }'_{x \times \widehat {S}} )^{-1}\circ \overline {\sigma }_{x\times \widehat {S}} \circ \widehat {\phi }_{x \times \widehat {S}} \,\in \, (H_{x}/\mathbb{C}^*e ) \times \widehat {S}\end{align*}
$x \,\in \, D$ , where
$\overline {\sigma }_{x\times \widehat {S}}\, \colon \,\mathbb{P}(E_{\widehat {S}}|_{x \times \widehat {S}})\,\longrightarrow \, \mathbb{P}(E_{\widehat {S}}'|_{x \times \widehat {S}})$ is induced by
$\sigma$ .
-
We say that
$\sigma$
is an automorphism of a framed
$G$
-connection
$(E,\,\phi ,\,\nabla )$
if
$\sigma$
is a holomorphic automorphism of the vector bundle
$E$
on
$X$
such that the diagram

is commutative and
$ \sigma |_{x}\circ \phi _{x}$
coincides with
$\phi _{x}$
in the quotient
${\rm Isom}(\mathcal{O}_{x}^{\oplus r} , \,\, E|_x)/H_x$
for each
$x\,\in \, D$
. Denote by
${\rm Aut}(E,\,\phi ,\,\nabla )$
the space of all automorphisms of a framed
$G$
-connection
$(E,\,\phi ,\,\nabla )$
.
Proposition 3.2. Assume that
$\mathbb{C}^* \cdot \textrm { Id}\, \not \subset \, H_x$
for some
$x\,\in \, D$
. Let
$(E,\,\phi ,\, \nabla )$
be a simple framed
$G$
-connection over
$X$
(see Definition 3.1(5)). Then
${\rm Aut}(E,\phi ,\nabla )$
is a finite group.
Proof. The space
${\rm Aut}(E,\,\phi ,\,\nabla )$
has the structure of a group scheme of finite type over
$\mathbb{C}$
. We can see that the tangent space of
${\rm Aut}(E,\,\phi ,\,\nabla )$
at the identity element is isomorphic to

which is zero because
$(E,\,\phi ,\,\nabla )$
is simple. Consequently,
${\rm Aut}(E,\,\phi ,\,\nabla )$
is a finite group.
Proposition 3.3. Assume that
$H_x\,=\,\{ e\}$
for all
$x\,\in \, D$
. Let
$(E,\,\phi ,\,\nabla )$
be a simple framed
$G$
-connection over
$X$
associated to
$\{H_x\}_{x\in D}$
. Then
${\rm Aut}(E,\,\phi ,\,\nabla ) \,=\, \{ {\rm Id}_{E}\}$
.
Proof. An automorphism
$\sigma \,\in \,{\rm Aut}(E,\,\phi ,\,\nabla )$
is an automorphism of the vector bundle
$E$
such that
$\nabla \circ \sigma \,=\, \sigma \circ \nabla$
and
$\phi _x\circ \sigma |_x\circ \phi _x^{-1}\,\in \, H_x$
for all
$x \,\in \, D$
. Since
$H_x\,=\,\{ e\}$
by the assumption, it follows that
$\sigma |_x\,=\,{\rm Id}|_{E|_x}$
for all
$x\,\in \, D$
. Now set

Then
$\widetilde {\sigma }|_x\,=\,0$
for all
$x\,\in \, D$
, and it is straightforward to check that
$\nabla \circ \widetilde {\sigma } - \widetilde {\sigma } \circ \nabla \,=\,0$
, that is,

Since
$(E,\,\phi ,\,\nabla )$
is simple, it follows that
$\widetilde {\sigma }\,=\,0$
, and hence
$\sigma \,=\, {\rm Id}_{E}$
.
Proposition 3.4. Assume that
$\mathbb{C}^* \cdot \textrm { Id}\, \subset \, H_{x}$
for all
$x\,\in \, D$
. If
$(E,\,\phi ,\, \nabla )$
is a simple framed
$G$
-connection over
$X$
, then the quotient
${\rm Aut}(E,\phi ,\nabla )/(\mathbb{C}^* \cdot \textrm { Id})$
is a finite group.
Proof. The tangent space of
${\rm Aut}(E,\,\phi ,\,\nabla )/(\mathbb{C}^* \cdot \textrm { Id})$
is zero, because we have that
$(E,\,\phi ,\,\nabla )$
is simple. Consequently,
${\rm Aut}(E,\,\phi ,\,\nabla )/(\mathbb{C}^* \cdot \textrm { Id})$
is a finite group.
3.2 Representation of moduli functors as Deligne–Mumford stacks
Proposition 3.5. The stack
$\mathcal{M}^{H}_{\textrm {FC}}(d)$
in Definition 3.1 is a Deligne–Mumford stack.
Proof. Fix a very ample line bundle
$\mathcal{O}_{X}(1)$
on the curve
$X$
. Define a polynomial
$\theta _d(m)$
in
$m$
to be

where
$d_X\,\,:=\,\, \deg \mathcal{O}_X(1)$
and
$g$
is the genus of
$X$
. Let

denote the fibered category whose objects are simple framed
${\rm GL}(r,\mathbb{C})$
-connections
$(E,\,\phi ,\,\nabla )$
on
$X\times S$
such that:
-
(1)
$H^1(X,\, E_s (m_0-1))\,=\,0$ for each
$s\,\in \, S$ ;
-
(2)
$\chi (E_s(m))\,= \,\theta _d(m)$ for each
$s \,\in \, S$ and all
$m \,\in \, \mathbb{Z}$ .
The fibered categories
$\Sigma _{m_0}^{d}$
in (3.1) form an open covering of
$\mathcal{M}^{H}_{\textrm {FC}} (d)$
. So we only have to prove that each
$\Sigma _{m_0}^{d}$
is a Deligne–Mumford stack.
Let

be the universal quotient sheaf of the Quot-scheme
${\rm Quot}^{\theta _d}_{(\mathcal{O}_X(-m_0)^{\oplus \theta _d(m_0)}/X)}$
. Define the open subset
$Q^d_{m_0}$
of
${\rm Quot}^{\theta _d}_{(\mathcal{O}_X(-m_0)^{\oplus \theta _d(m_0)}/X)}$
by

There is a locally free
$\mathcal{O}_{Q^d_{m_0}}$
–module
$\mathscr{H}\,\,_D$
such that
$\boldsymbol{V}^*(\mathscr{H}\,\,_D)\,\,:=\,\,{\rm Spec}({\rm Sym}^*\mathscr{H}\,\,_D)$
represents the functor

for any Noetherian schemes
$S$
over
$Q^d_{m_0}$
. There is a universal family

for every
$x \,\in \,D$
. Define
$\widetilde {Q}^{d}_{m_0}$
as follows:

Consider the map
$\widetilde {Q}^{d}_{m_0} \, \longrightarrow \, Q^d_{m_0}$
. For each Noetherian scheme
$S$
over
$Q^d_{m_0}$
, the natural transitive group action of
$G \times S$
on

induces an action on
$\widetilde {Q}^{d}_{m_0}$
of the group scheme
$\left (\prod _{x \in D}G\right )\times Q^d_{m_0}$
over
$Q^d_{m_0}$
. The group scheme
$\left (\prod _{x \in D}H_x\right )\times Q^d_{m_0}$
acts on
$\widetilde {Q}^{d}_{m_0}$
by restricting this action of
$(\prod _{x \in D}G)\times Q^d_{m_0}$
on
$\widetilde {Q}^{d}_{m_0}$
. Set

Let
$\widetilde {\mathcal{E}}$
be the pull-back of the family
$\mathcal{E}$
under the map
$X \times \widetilde {Q}^{d,H}_{m_0} \, \longrightarrow \, X \times Q^d_{m_0}$
. We have a family
$\widetilde {\phi }_x$
of sections of

induced by
$\varphi ^x$
. Put
$\widetilde {\phi }\,\,:=\,\,\{\widetilde {\phi }_x \}_{x \in D}$
.
Let

be the natural projection map. Let
${\rm At}(\widetilde {\mathcal{E}})$
be the Atiyah bundle for
$\widetilde {\mathcal{E}}$
. Then there is a short exact sequence

Set
${\rm At}_{D} (\widetilde {\mathcal{E}}) \,\,\,:=\,\,\, {\rm symb}_1^{-1}\left (T_{X\times \widetilde {Q}^{d,H}_{m_0} /\widetilde {Q}^{d,H}_{m_0}}(-D\times \widetilde {Q}^{d,H}_{m_0}) \right )$
. The natural short exact sequences of Atiyah bundles induces an exact sequence as follows.

In particular, there are two compositions of maps

and

Here,
${\rm res}_{D \times \widetilde {Q}^{d,H}_{m_0}}$
is the residue map

Using the family
$\widetilde {\phi }$
of framings and the Lie subgroups
$H_x$
for each
$x\,\in \,D$
, we may define a subsheaf
$\mathcal{H}^{\perp }_{x \times \widetilde {Q}^{d,H}_{m_0}} \,\subset \, {\rm End} (\widetilde {\mathcal{E}})|_{D\times \widetilde {Q}^{d,H}_{m_0}}$
as in (2.10). Define subsheaves
${\rm At}^{\widetilde {\phi }}_{D} (\widetilde {\mathcal{E}}) \,\subset \, {\rm At}_{D} (\widetilde {\mathcal{E}})$
and
$\mathcal{E}nd_{\widetilde {\phi }}^n(\widetilde {\mathcal{E}}) \,\subset \, \mathcal{E}nd(\widetilde {\mathcal{E}})$
such that
${\rm At}^{\widetilde {\phi }}_{D} (\widetilde {\mathcal{E}}) \otimes K_X(D)$
is the inverse image of
$\mathcal{H}^{\perp }_{x \times \widetilde {Q}^{d,H}_{m_0}}$
under the composition of maps in (3.4) and
$\mathcal{E}nd_{\widetilde {\phi }}^n(\widetilde {\mathcal{E}})\otimes K_X(D)$
is the inverse image of
$\mathcal{H}^{\perp }_{x \times \widetilde {Q}^{d,H}_{m_0}}$
under the composition of maps in (3.5).
By [Reference GrothendieckGrot1, Theorem 7.7.6], there is a unique coherent sheaf
$\mathscr{H}\,\,$
on
$\widetilde {Q}^{d,H}_{m_0}$
(up to isomorphism) such that

for any
$\widetilde {Q}^{d,H}_{m_0}$
-scheme
$Q'$
and any quasi-coherent sheaf
$M$
on
$Q'$
. Here,
$\pi _{Q'}$
is the natural projection
$X \times Q' \,\longrightarrow \, Q'$
. Set

There is a natural morphism
$\varphi \,\in \, \mathcal{H}\textrm {om}_{\mathcal{O}_{\boldsymbol{V} (\mathscr{H}\,\,)}} (\mathscr{H}\,\,_{\boldsymbol{V} (\mathscr{H}\,\,)} ,\, \mathcal{O}_{\boldsymbol{V} (\mathscr{H}\,\,)})$
by the definition of
$\boldsymbol{V} (\mathscr{H}\,\,)$
. In view of the isomorphism in (3.6), there is an element
$\varphi ' \,\in \, \pi _*( ( {\rm At}^{\widetilde {\phi }}_{D} (\widetilde {\mathcal{E}}) \otimes K_X(D) )_{\boldsymbol{V} (\mathscr{H}\,\,)})$
corresponding to
$\varphi$
. The morphism
${\rm symb}_1^{D}$
induces a morphism

Using this morphism, there is a function
$f_{{\rm symb}_1^{D}}$
on
$\boldsymbol{V} (\mathscr{H}\,\,)$
corresponding to
$\varphi '$
. Denote by
$I_{{\rm symb}_1^{D}}$
the ideal sheaf of
$\mathcal{O}_{\boldsymbol{V} (\mathscr{H}\,\,)}$
generated by
$f_{{\rm symb}_1^{D}}-1$
. Put

Also, denote by
$\widetilde {\mathcal{E}}$
the pull-back of
$\widetilde {\mathcal{E}}$
under the natural morphism
$X \times Z^{d,H}_{m_0} \,\longrightarrow \, X\times \widetilde {Q}^{d,H}_{m_0,{\rm spl}}$
, and let

be a universal relative connection on
$\widetilde {\mathcal{E}}$
, which is determined by
$\varphi '$
. Define the open subset
$(Z^{d,H}_{m_0})'$
of
$Z^{d,H}_{m_0}$
by

and denote by
$\big (\widetilde {\mathcal{E}},\, \widetilde {\phi }\,=\, \big \{[\widetilde {\phi }_{x\times (Z^{d,H}_{m_0})'}] \big \}_{x\in D},\, \widetilde {\nabla }\big )$
a universal family of
$m_0$
-regular simple framed
$G$
-connections on
$X\times (Z^{d,H}_{m_0})'$
. Here,
$m_0$
-regular means
$H^1(X,\, \widetilde {\mathcal{E}}_s (m_0-1))\,=\,0$
for each
$s\,\in \, (Z^{d,H}_{m_0})'$
.
Now, consider the case where
$\mathbb{C}^* \cdot \textrm { Id}\, \not \subset \, H_x$
for some
$x\,\in \, D$
. There exists an action of
${\rm GL}(\theta _d(m_0),\mathbb{C})$
on
$(Z^{d,H}_{m_0})'$
given by

on
$S$
-points for
$g \,\in \, {\rm GL}(\theta _d(m_0),\mathbb{C})_S$
. Consider the map

This map gives an isomorphism

Here,
$\big [ \, (Z^{d,H}_{m_0})' \, \big / \, {\rm GL}(\theta _d(m_0),\mathbb{C}) \, \big ]$
is a quotient stack. Consequently,
$\Sigma _{m_0}^{d}$
is an algebraic stack. Using Proposition 3.2, it follows that
$\Sigma _{m_0}^{d}$
is in fact a Deligne–Mumford stack (see [Reference OlssonOls, Corollary 8.4.2]).
Next, we consider the case where
$\mathbb{C}^* \cdot \textrm { Id}\, \subset \, H_x$
for every
$x\,\in \, D$
. The
$\mathbb{C}^*$
-action on
$(Z^{d,H}_{m_0})'$
is trivial, because
$\mathbb{C}^* \cdot \textrm { Id}\, \subset \, H_x$
for all
$x\,\in \, D$
. There exists a natural action of
${\rm PGL}(\theta _d(m_0),\,\mathbb{C})$
on
$(Z^{d,H}_{m_0})'$
. Define a map

It is straightforward to check that this map gives an isomorphism

Then
$\Sigma _{m_0}^{d}$
is an algebraic stack. By Proposition 3.4, it follows that
$\Sigma _{m_0}^{d}$
is in fact a Deligne–Mumford stack (see [Reference OlssonOls, Corollary 8.4.2]).
Remark 3.6. If
$H_x \,=\, {e}$
for all
$x\,in \, D$
, then
$\mathcal{M}^{H}_{\textrm {FC}}(d)$
is an algebraic space by Proposition 3.3.
Remark 3.7. In the proof of Proposition 3.5, we introduced the coherent sheaf
$\mathscr{H}\,\,$
which is characterized by the property (3.6). Since
$\mathscr{H}\,\,$
is not necessarily locally free, we cannot see the irreducibility of the moduli space
$\mathcal{M}^H_{{\rm FC}}(d)$
immediately from its construction.
Define an open substack of
$\mathcal{M}^{H}_{\textrm {FC}}(d)$
as follows:

Here we say that
$(E_s,\,\phi _s)$
is simple if

We adopt the above definition of simple framed bundle in order that the loci
$\mathcal{M}^{H}_{\textrm {FC}}(d)^{\circ }$
becomes open in
$\mathcal{M}^{H}_{\textrm {FC}}(d)$
.
Proposition 3.8. The open substack
$\mathcal{M}^{H}_{\textrm {FC}}(d)^{\circ }$
in (3.7) is irreducible.
Proof. Fix a very ample line bundle
$\mathcal{O}_{X}(1)$
on the curve
$X$
. Let
$\theta _d(m)$
be a polynomial in
$m$
defined as in Proposition 3.5. Let
$(\Sigma _{m_0}^{d})^{\circ }$
denote the substack of
$\mathcal{M}^{H}_{\textrm {FC}}(d)^{\circ }$
whose objects are framed
${\rm GL}(r,\mathbb{C})$
-connections
$(E,\,\phi ,\,\nabla )$
on
$X$
such that:
-
(1)
$(E,\,\phi )$ is simple;
-
(2)
$H^1(X,\, E (m_0-1))\,=\,0$ ;
-
(3)
$\chi (E(m))\,= \,\theta _d(m)$ for all
$m \,\in \, \mathbb{Z}$ .
To prove the proposition it suffices to show that
$(\Sigma _{m_0}^{d})^{\circ }$
is irreducible.
Let
$V$
be a
$\theta _d(m_0)$
-dimensional vector space so that the underlying vector bundle
$E$
of any object of
$(\Sigma _{m_0}^{d})^{\circ }$
is described as the following quotient:

Take a subspace
$V_r \,\subset \, V$
such that
$\dim (V_r) \,=\,r$
. Taking the dual of the above quotient, and tensoring with
$\mathcal{O}_X (-m_0)$
, we have the following short exact sequence

where
$F$
is the quotient for the injective map
$E^{\vee }(-m_0) \,\longrightarrow \, V_r^{\vee } \otimes \mathcal{O}_X$
. So for each object of
$(\Sigma _{m_0}^{d})^{\circ }$
, there is a point of
${\rm Quot}^N_{(V_r^{\vee }\otimes \mathcal{O}_X)/X}$
which determines the underlying vector bundle of the object. Here
$N$
is the length of
$F$
. Note that
$N$
remains constant for the underlying vector bundles. We will show that
${\rm Quot}^N_{(V_r^{\vee }\otimes \mathcal{O}_X)/X}$
is irreducible.
The Quot-scheme
${\rm Quot}^N_{(V_r^{\vee }\otimes \mathcal{O}_X)/X}$
is smooth, because the obstructions to deformations of

lie in

Define the map

Let
$H'$
be the Zariski open subset of
${\rm Hilb}^N_{X}$
which consists of distinct points on
$X$
, or in other words,
$H'$
parametrizes the reduced subschemes. This Zariski open subset
$H'$
is in fact irreducible. The map

is a
$(\mathbb{P}^{r-1}\times \cdots \times \mathbb{P}^{r-1})$
-bundle; here
$\mathbb{P}^{r-1}\times \cdots \times \mathbb{P}^{r-1}$
is the product of
$N$
-copies of
$\mathbb{P}^{r-1}$
. Hence
$f_N^{-1}(H')$
is irreducible. Take a point
$x \,=\, N_1 z_1+ \cdots +N_l z_l$
on
${\rm Hilb}^N_{X}$
, where
$\sum _{i=1}^l N_i\, =\,N$
and
$z_1,\,\cdots ,\,z_l$
are distinct points on
$X$
. A point on
$f^{-1}_N(x)$
can be described as a collection
$\left ( \, q_i \,\colon \, V_r^{\vee } \otimes \mathcal{O}_{z_i,X} \,\longrightarrow \, F_i\, \right )_{i=1}^l$
for which
${\rm length}(F_i)\,=\,N_i$
. Consider the map
$({\rm Ker}\, q_i )_{z_i} \,\longrightarrow \, V_r^{\vee } \otimes \mathcal{O}_{z_i,X}$
corresponding to a point on
$f^{-1}_N(x)$
. Note that
$({\rm Ker}\, q_i )_{z_i}\,\cong \, \mathcal{O}_{z_i,X}^{\oplus r}$
. We have a matrix representation of
$({\rm Ker}\, q_i )_{z_i} \,\longrightarrow \, V_r^{\vee } \otimes \mathcal{O}_{z_i,X}$
as follows:

where the maximal ideal
$\mathfrak{m}_{z_i}$
is
$\{z=0 \}$
, and
$1,\,z^{l_{i,1}},\,\ldots ,\,z^{l_{i,s_i}}$
are invariant factors of

For any tuple of complex numbers
$a_1^{(i)},\,\ldots ,\,a_{s_i}^{(i)}$
, there is a deformation of
$({\rm Ker}\, q_i )_{z_i} \,\longrightarrow \, V_r^{\vee } \otimes \mathcal{O}_{z_i,X}$

over
$X \times {\rm Spec}\, \mathbb{C}[t]$
. When the complex numbers
$a_1^{(i)},\,\cdots ,\,a_{s_i}^{(i)}$
are generic, we have a deformation moving from a point on
$f^{-1}_N(x)$
, where
$x \,=\, N_1 z_1+ \cdots +N_l z_l$
, to a point on
$f_N^{-1}(H')$
. Therefore,
${\rm Quot}^N_{(V_r^{\vee }\otimes \mathcal{O}_X)/X}$
is irreducible.
Consider the open subset

Here, denote
$E_q\,\,:=\,\,({\rm ker} q)^{\vee } (-m_0)$
for a quotient
$q$
. By definition,
$E_q$
is locally free and satisfies the condition
$\chi (E_q (m)) = \theta _d(m)$
for all
$m \, \in \, \mathbb{Z}$
. Let
$\widetilde {Q}'$
be the scheme over
$Q'$
which parametrizes quotients
$q$
in
$Q'$
and framings of
$E_q$
, which is constructed as in the proof of Proposition 3.5. Now define
$(\widetilde {Q}')^{\circ }$
as follows:

Here,
$(\widetilde {\mathcal{E}} ,\, \widetilde {\phi } )$
is the family of vector bundles
$E_q$
and framings of
$E_q$
in
$\widetilde {Q}'$
induced by the universal family of
$\widetilde {Q}'$
. Since
${\rm Quot}^N_{(V_r^{\vee }\otimes \mathcal{O}_X)/X}$
is irreducible,
$(\widetilde {Q}')^{\circ }$
is also irreducible. Let
$(Z')^{\circ }$
be the scheme over
$(\widetilde {Q}')^{\circ }$
which parametrizes quotients
$q$
with framings of
$E_q$
in
$(\widetilde {Q}')^{\circ }$
and connections on
$E_q$
that are compatible with the framings. The scheme
$(Z')^{\circ }$
is also constructed as in the proof of Proposition 3.5. It is straightforward to check that
$(Z')^{\circ }$
is smooth and each fiber of
$(Z')^{\circ } \,\longrightarrow \, (\widetilde {Q}')^{\circ }$
is an affine space which is isomorphic to
$H^0(X,\, {\rm End}_{\phi }^n (E) \otimes K_X(D))$
. So
$(Z')^{\circ }$
is irreducible. Since a natural map from
$(Z')^{\circ }$
to
$(\Sigma _{m_0}^{d})^{\circ }$
is induced and this map is surjective, we conclude that
$(\Sigma _{m_0}^{d})^{\circ }$
is irreducible. This completes the proof of the proposition.
4. Symplectic structures of the moduli spaces
Throughout this section it is assumed that
$G\,=\,{\rm GL}(r,\mathbb{C})$
.
4.1 Cotangent bundle of the moduli space of simple framed bundles
In this subsection, we assume that
$H_x\,=\,\{ e \}\, \subset \, {\rm GL}(r,\mathbb{C})$
for all
$x \,\in \, D$
. Let
$\mathcal{N}^e(d)$
be the following moduli space:

Here,
$(E,\, \phi ) \,\sim _e\, (E',\, \phi ' )$
if there exists an isomorphism
$\sigma \,\colon \, E\,\longrightarrow \, E'$
of vector bundles such that the composition of homomorphisms
$(\phi '_{x})^{-1} \circ \sigma |_{x}\circ \phi _{x}$
is the identity map of
${\mathbb C}^r$
for each
$x\,\in \, D$
. Since the tangent space of
$\mathcal{N}^e(d)$
at
$(E,\,\phi )$
is
$H^1(X,\,\mathcal{E}nd(E)(-D))$
[Reference Biswas, Logares and Peón-NietoBLP1, Lemma 2.5], using the Serre duality it follows that the cotangent space of
$\mathcal{N}^e(d)$
at
$(E,\,\phi )$
is
$H^0 (X,\, \mathcal{E}nd(E) \otimes K_X(D))$
. Let
$T^*\mathcal{N}^e(d)$
be the cotangent bundle of
$\mathcal{N}^e(d)$
. For
$\theta \, \in \, H^0 (X,\, \mathcal{E}nd(E) \otimes K_X(D))$
, define the following
$2$
-term complex:

The tangent space
$T_{(E,\phi ,\theta )}T^*\mathcal{N}^e(d)$
at
$(E,\,\phi ,\,\theta )$
is
$\mathbb{H}^1(\mathcal{C}_{\bullet }^{{\rm Higgs}})$
[Reference Biswas, Logares and Peón-NietoBLP1, Lemma 2.7]. Given an affine open covering
$\{ U_{\alpha } \}$
of
$X$
, the hypercohomology
$\mathbb{H}^1(\mathcal{C}_{\bullet }^{{\rm Higgs}})$
admits a description in terms of Čech cohomology. In this description, the
$1$
-cocycles are pairs
$(\{ u_{\alpha \beta } \} ,\, \{ v_{\alpha } \})$
, where

such that
$u_{\beta \gamma }-u_{\alpha \gamma }+u_{\alpha \beta }\,=\,0$
and
$v_{\beta }-v_{\alpha }\,=\, [\theta ,\, u_{\alpha \beta }]$
. The
$1$
-coboundaries are of the form
$(\{w_{\alpha }-w_{\beta } \} ,\, \{[w_\alpha ,\, \theta ]\})$
, where
$w_{\alpha } \,\in \, \mathcal{E}nd(E)(-D)(U_{\alpha })$
.
We define a canonical
$1$
-form
$\phi _{\mathcal{N}^e(d) }$
on the cotangent bundle
$T^*\mathcal{N}^e(d)$
by

Lemma 4.1. Let
$\Phi _{T^*\mathcal{N}^e(d)}$
be the Liouville
$2$
-form on the cotangent bundle
$T^*\mathcal{N}^e(d)$
, that is,
$\Phi _{T^*\mathcal{N}^e(d)}$
is the exterior derivative of the canonical
$1$
-form
$\phi _{\mathcal{N}^e(d) }$
in (4.2). The Liouville
$2$
-form
$\Phi _{T^*\mathcal{N}^e(d)}$
coincides with the bilinear form

on the Čech cohomology.
Proof. Let
$v$
and
$v'$
be tangent vectors of
$T^*\mathcal{N}^e(d)$
at
$(E,\,\phi ,\,\theta ) \,\in \, T^*\mathcal{N}^e(d)$
. Let

be the derivative corresponding to
$v$
. Take an affine open subset
$U\,\subset \, T^*\mathcal{N}^e(d)$
such that
$(E,\,\phi ,\,\theta ) \,\in \, U$
, and also take an affine open covering
$\{ U_{\alpha } \}$
of
$X\times U$
such that there is a trivialization

for each
$U_{\alpha }$
. Set
$g_{\alpha \beta }\,\,:=\,\,g_{\alpha } \circ g^{-1}_{\beta }$
and
$\theta _{\alpha }\,\,:=\,\, g_{\alpha } \circ \theta |_{U_{\alpha }} \circ g_{\alpha }^{-1}$
. We may describe the tangent vector
$v$
as

where
$u_{\alpha \beta }\,\,:=\,\, g_{\alpha }^{-1} \circ ( D_{v}(g_{\alpha \beta } )g_{\alpha \beta }^{-1} ) \circ g_{\alpha }$
and
$v_{\alpha }\,\,:=\,\, g_{\alpha }^{-1} \circ ( D_v \theta _{\alpha }) \circ g_{\alpha }$
. The exterior derivative of
$\phi _{\mathcal{N}^e(d) }$
is computed as follows:


This completes the proof of the lemma.
4.2 2-form on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
As before, assume that
$H_x\,=\,\{ e \}\, \subset \, {\rm GL}(r,\mathbb{C})$
for every
$x \,\in \, D$
. Let
$\mathbb{K}$
denote the following complex of coherent sheaves on
$X$
:

where
$\mathcal{O}_{X }$
and
$K_X$
are at the
$0$
-th position and
$1$
-position, respectively, and
$d$
is the de Rham differential.
Consider the complex
$\mathcal{C}_{\bullet }$
in (2.11). Define a pairing

in terms of the Čech cohomology with respect to an affine open covering
$\{ U_{\alpha }\}$
of
$X$
.
Lemma 4.2. The pairing
$\Theta ^e$
in (4.4) satisfies the identity

Thus,
$\Theta ^e$
is skew-symmetric, and hence produces a
$2$
-form on
$\mathcal{M}^e_{{\rm FC}} (d)$
(see Lemma 2.4).
Proof. Let
$v\,=\, [(\{u_{\alpha \beta } \} ,\, \{ v_{\alpha } \})]$
be an element of
$\mathbb{H}^1 (\mathcal{C}_{\bullet })$
. We compute
$\Theta ^e(v,\,v)$
as follows:

On the other hand,

Combining these, it follows that
$\Theta ^e(v,\,v)\,=\,0$
in
$\mathbb{H}^2(\mathbb{K})$
.
Remark 4.3. We have constructed a 2-form
$\Theta ^e$
on
$\mathcal{M}^e_{{\rm FC}} (d)$
by (4.4). On the other hand, there exists another definition of this 2-form from a differential geometric perspective; this will be explained below. First, recall a description of
$\mathbb{H}^1 (\mathcal{C}_{\bullet })$
as a Dolbeault cohomology. (See the proof of Theorem 3.2 of [Reference BiswasBi].) Let
$\overline {\partial }'$
and
$\overline {\partial }'_1$
be the Dolbeault operators for the holomorphic vector bundles
$\mathcal{E}nd(E)(-D)$
and
$\mathcal{E}nd(E)(D)$
, respectively. Consider the Dolbeault resolution of the complex
$\mathcal{C}_{\bullet }$
:

where
$\nabla '$
is constructed using
$\nabla$
and the usual differential operator
$\partial$
on
$(0,\,1)$
-forms on
$X$
. Note that

This produces the following complex of vector spaces

Since the Dolbeault complex is a fine resolution of
$\mathcal{C}_{\bullet }$
, it follows immediately that

Then the
$2$
-form
$\Theta ^e$
in (4.4) can be described using the Dolbeault cohomology in the following way:

4.3 Symplectic structure on
$\mathcal{M}^{e}_{{\rm FC}} (d)^{\circ }$
Now take the restriction of
$\Theta ^e$
to
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
; here,
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
is the open substack of
$\mathcal{M}^{e}_{{\rm FC}}(d)$
defined in (3.7), or in other words, the underlying framed bundle
$(E, \, \phi )$
of any
$(E,\, \phi ,\, \nabla )\, \in \, \mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
satisfies the condition that it is simple. Denote this restriction of
$\Theta ^e$
to
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
by
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
. It will be shown that this restriction of
$\Theta ^e$
is a symplectic form.
Let

be the forgetful map that simply forgets the connection. Take an analytic open subset
$U\, \subset \, \mathcal{N}^e(d)$
, which is assumed to be small enough. Then there exist sections, over
$U$
, of the map
$p_1$
in (4.5). Let

be a holomorphic section. Using
$s$
, an isomorphism

is obtained. The restriction, to
$p_1^{-1}(U)$
, of the form
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
is denoted by
$\Theta ^e|_{p_1^{-1}(U)}$
.
Lemma 4.4. Let
$\Phi _U$
be the Liouville
$2$
-form on the cotangent bundle
$T^*U$
. Then,

where
$\Theta ^e|_{p_1^{-1}(U)}$
is the restriction of the form in (4.4) and
$p_1$
is the projection in (4.5), while
$P_1$
is the isomorphism in (4.6).
Proof. Take a point
$z\,=\,(E,\,\phi ,\,\nabla )$
of
$p_1^{-1}(U)$
. Let
$\nabla (E,\,\phi )$
be the connection associated to the point
$s\circ p_1(z)$
. The image of
$z$
under the map
$P^{-1}_1$
in (4.6) is as follows:

Let
$[(\{u_{\alpha \beta } \} ,\,\{ v_{\beta } \})]$
be an element of
$\mathbb{H}^1((\mathcal{C}_{\bullet })_z)$
, where
$(\mathcal{C}_{\bullet })_z$
is the complex in (2.11) associated to
$z\,=\,(E,\,\phi ,\, \nabla )$
. Recall from Lemma 2.4 that
$\mathbb{H}^1((\mathcal{C}_{\bullet })_z)$
is the tangent space of
$p_1^{-1}(U)$
at
$z$
. Note that
$u_{\alpha \beta }$
and
$v_{\alpha }$
satisfy the equality

Let
$[(\{u_{\alpha \beta }\},\, \{ v^s_{\alpha } \})]$
be the element of
$\mathbb{H}^1((\mathcal{C}_{\bullet })_{s\circ p_1(z)})$
such that

Note that
$u_{\alpha \beta }$
and
$v^s_{\alpha }$
satisfy the equality

Since

it follows that
$[(\{ u_{\alpha \beta } \} ,\,\{v_{\alpha }-v_{\alpha }^s \})]$
is an element of
$\mathbb{H}^1 (\mathcal{C}^{{\rm Higgs}}_{\bullet })$
; recall that
$\mathbb{H}^1 (\mathcal{C}^{{\rm Higgs}}_{\bullet })$
is the tangent space of
$T^*U$
at
$P_1^{-1}(z)$
(see (4.6)). There is a map

This map coincides with
$(P_1^{-1})_* \,\colon \,\mathbb{H}^1 ((\mathcal{C}_{\bullet })_z) \, \longrightarrow \,\mathbb{H}^1 (\mathcal{C}^{{\rm Higgs}}_{\bullet })$
.
Now we compute the map

as follows:

On the other hand, we compute

as follows:

Therefore, we have the equality
$\Theta ^e|_{p_1^{-1}(U)} - (P_1^{-1})^* \Phi _U \,=\, p_1^* (s^* \Theta ^e|_{p_1^{-1}(U)})$
.
It will now be shown that the restriction of
$\Theta ^e$
to
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
is nondegenerate.
Corollary 4.5. The
$2$
-form
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
is nondegenerate.
Proof. For any point
$(E,\,\phi ,\,\nabla )\, \in \, \mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ }$
and any tangent vectors
$v,\, w\, \in \, T_{(E,\phi ,\nabla )} \mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ }$
, we have

when one of
$v$
and
$w$
is vertical for the projection
$p_1$
in (4.5). So, if
$w$
is vertical, from Lemma 4.4 it follows that

Since
$\Phi _U$
is a symplectic form, there is a tangent vector
$v\, \in \, T_{(E,\phi ,\nabla )} \mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ }$
such that

Now from (4.7) it follows that
$\Theta ^e(E,\,\phi ,\,\nabla )(v,\, w)\, \not =\, 0$
.
Since the vertical tangent spaces for the projection
$T^*U\, \longrightarrow \, U$
are Lagrangian for the Liouville
$2$
-form
$\Phi _U$
, given any non-vertical tangent vector

for the projection
$T^*U\, \longrightarrow \, U$
, there is a vertical tangent vector

for the projection
$T^*U\, \longrightarrow \, U$
such that
$(P_1^{-1})^* \Phi _U (E,\,\phi ,\,\nabla )(v,\, w)\,\not =\, 0$
. Now from (4.7) it follows that
$\Theta ^e(E,\,\phi ,\,\nabla )(v,\, w)\, \not =\, 0$
. Consequently, the form
$\Theta ^e\vert _{p^{-1}(U)}$
is nondegenerate.
Remark 4.6. It was shown above that the restriction of
$\Theta ^e$
to
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
is nondegenerate by using Lemma 4.4. We will show that the 2-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}}(d)$
is nondegenerate by using the Serre duality (Proposition 4.18 below). So it can be shown that the restriction of
$\Theta ^e$
to
$\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }$
is nondegenerate without using Lemma 4.4. Nevertheless, we have discussed nondegeneracy of the restriction of
$\Theta ^e$
by using this lemma because this argument highlights another important perspective. Lemma 4.4 will be used below in the proof of the
$d$
-closedness of the restriction of
$\Theta ^e$
. Moreover, the
$d$
-closedness of the restriction of
$\Theta ^e$
will be used below in the proof of the
$d$
-closedness of
$\Theta ^e$
on
$\mathcal{M}^{e}_{\textrm {FC}}(d)$
.
Proposition 4.7. Assume that
$g\,\geqslant \, 2$
. Let
${\mathcal M}^e_{{\rm FC}}(d)^{\circ }$
be the open subspace of
$\mathcal{M}^{e}_{{\rm FC}}(d)$
defined in (3.7) for
$H=\{e\}$
. Then the restriction
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
of the nondegenerate
$2$
-form
$\Theta ^e$
in (4.4) is
$d$
-closed.
Proof. The moduli space
$\mathcal{N}^e(d)$
in (4.1) has the open subset
$\mathcal{N}^e(d)^{\circ }$
defined by

Also, let
$\mathcal{M}_{{\rm FC}}^{e}(d)^{\circ \circ }\, \subset \, \mathcal{M}_{{\rm FC}}^{e}(d)^{\circ }$
(see Definition 3.1) be the open subset

The openness of both
$\mathcal{N}^e(d)^{\circ }$
and
$\mathcal{M}_{{\rm FC}}^{e} (d)^{\circ \circ }$
follows from [Reference MaruyamaMaru, p. 635, Theorem 2.8(B)]. The moduli spaces
$\mathcal{N}^e(d)^{\circ }$
and
$\mathcal{M}_{{\rm FC}}^{e}(d)^{\circ \circ }$
are non-empty because
$g\,\geqslant \, 2$
.
To prove that the form
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
on
$\mathcal{M}_{{\rm FC}}^{e}(d)^{\circ }$
is closed, it suffices to show that the restriction of
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
to
$\mathcal{M}_{{\rm FC}}^{e}(d)^{\circ \circ }$
is closed.
Let
$p_{1,0}\, :\, \mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ \circ } \,\longrightarrow \,\mathcal{N}^e(d)^{\circ }$
be the restriction of the forgetful map
$p_1$
in (4.5). Take a sufficiently small analytic open subset
$U \, \subset \, \mathcal{N}^e(d)^{\circ }$
such that there is a holomorphic section

over
$U$
, of
$p_{1,0}$
. Now, Lemma 4.4 says that

on
$p_{1,0}^{-1}(U)$
. This implies that

on
$p_{1,0}^{-1}(U)$
, because the Liouville
$2$
-form is
$d$
-closed.
In view of (4.9), to prove the theorem it suffices to show the existence of a local holomorphic section
$s\,\colon \, U \,\longrightarrow \, p^{-1}_{1,0}(U)$
of the map
$p^{-1}_{1,0}$
such that
$d(s^*\Theta ^e)\,=\, 0$
.
We shall construct a holomorphic section
$s\,\colon \, U \,\longrightarrow \, p^{-1}_{1,0}(U)$
such that

For that, first define a moduli space

where
$e$
is the identity matrix. There is the natural inclusion map

where
$\mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ \circ }$
is defined in (4.8). Also, define two moduli spaces

and

There are the forgetful maps

where
$q_2$
and
$p_2$
forget the framing while
$q_1$
forgets the connection.
Take an analytic open subset
$U_0\,\subset \, \mathcal{N}(d)^{\circ }$
. Assume that
$U_0$
is small enough and that the image of
$U$
under the forgetful map
$p_2 \,\colon \, \mathcal{N}^e (d)^{\circ }\,\longrightarrow \, \mathcal{N}(d)^{\circ }$
is contained in
$U_0$
, by shrinking sufficiently the analytic open subset
$U$
. Take a holomorphic section

of the forgetful map
$q_1 \,\colon \, \mathcal{M}(d)^{\circ \circ }_{0}\,\longrightarrow \, \mathcal{N}(d)^{\circ }$
. Since
$H_x\,=\,\{ e\}$
for all
$x\in D$
, we may define a section
$\widetilde {s}$
on
$U$

using the section
$s_0$
. Define the section
$s$
on
$U$
of
$p_{1,0} \,\colon \, p_1^{-1}(U)\,\longrightarrow \, U$
by

Now we shall prove that

for such a section.
To prove (4.12), first recall that the moduli space
$\mathcal{M}(d)^{\circ \circ }_{0}$
is equipped with a natural symplectic structure. We briefly describe this symplectic structure on
$\mathcal{M}(d)^{\circ \circ }_{0}$
. The tangent space to
$\mathcal{M}(d)^{\circ \circ }_{0}$
at any point
$(E,\,\nabla )$
is isomorphic to the first hypercohomology
$\mathbb{H}^1(\mathcal{C}^0_{\bullet })$
, where

Define a nondegenerate
$2$
-form
$\Theta _0$
on
$\mathcal{M}(d)^{\circ \circ }_{0}$

exactly as done in (4.4). This
$2$
-form
$\Theta _0$
is
$d$
-closed, which is proved in [Reference GoldmanGol].
Secondly, we show that

where
$q_2$
and
$\iota$
are the maps in (4.11) and (4.10) respectively. To prove (4.14), note that the tangent space of
$\mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ \circ }_{0}$
at
$(E,\,\phi ,\,\nabla )$
is isomorphic to the first hypercohomology
$\mathbb{H}^1(\mathcal{C}'_{\bullet })$
of the complex

For
$[(\{u_{\alpha \beta }\} ,\{ v_{\alpha }\})]\,\in \, \mathbb{H}^1(\mathcal{C}'_{\bullet })$
, we have that

and

Therefore,
$\iota ^* \Theta ^e$
and
$q_2^* \Theta _0$
have the following identical description:

This proves (4.14).
Thirdly, by the equality
$\iota ^* \Theta ^e \,=\, q_2^* \Theta _0$
in (4.14), we have

Since
$\Theta _0$
is
$d$
-closed, it follows that
$d(s^* \Theta ^e)\,=\,0$
, proving (4.12).
Finally, from the combination of (4.12) and the equality
$d \Theta ^e\,=\, p^*_{1,0} d (s^* \Theta ^e)$
(see (4.9)), it follows that
$d \Theta ^e\,=\,0$
on
$p^{-1}_{1,0}(U)$
. This implies that the
$2$
-form
$\Theta ^e$
is
$d$
-closed on
$\mathcal{M}_{\textrm {FC}}^{e}(d)^{\circ }$
. As noted before, this proves the theorem.
Next, we show the
$d$
-closedness of
$\Theta ^e$
in (4.4) when
$g\,=\,0$
and
$g\,=\,1$
. For this purpose, we recall the definition of parabolic connections. Let

be an
$n$
-pointed smooth projective curve of genus
$g$
over
$\mathbb{C}$
, where
$x_1, \,\cdots ,\,x_n$
are distinct points of
$X$
. Denote the reduced divisor
$x_1+\cdots +x_n$
on
$X$
by
$D(\boldsymbol{x})$
or simply by
$D$
if there is no possibility of confusion. Take a positive integer
$r$
.
Definition 4.8. A
$\boldsymbol{x}$
-quasi-parabolic bundle of rank
$r$
and degree
$d$
is a pair
$(E,\, \boldsymbol{l}\, =\, \{ l^{(i)}_* \}_{1\leqslant i \leqslant n})$
, where:
-
(1)
$E$ is an algebraic vector bundle on
$X$ of rank
$r$ and degree
$d$ ;
-
(2)
$l^{(i)}_*$ is a filtration of subspaces
$E\big \vert _{x_i} \,=\, l_0^{(i)} \,\supset \, l_1^{(i)}\,\supset \,\cdots \,\supset \, l_r^{(i)}\,=\,0$ for every
$1\, \leqslant \, i\, \leqslant \, n$ such that
$\dim (l_j^{(i)}/l_{j+1}^{(i)})\,=\,1$ .
Let
$\boldsymbol{\alpha }$
be a tuple
$(\alpha ^{(i)}_j)^{1\leqslant i\leqslant n}_{1\leqslant j\leqslant r}$
of real numbers which satisfy the condition

for each
$1\leqslant i\,\leqslant \, n$
and
$\alpha ^{(i)}_j\,\neq \, \alpha ^{(i')}_{j'}$
for all
$(i,\,j)\,\neq \,(i',\,j')$
. We call the tuple
$\boldsymbol{\alpha }$
a parabolic weight. Take an element

such that
$\sum _{i,j} \nu ^{(i)}_j \,=\, -d \,\in \, \mathbb{Z}$
.
Definition 4.9. A quadruple
$(E,\,\nabla ,\, \boldsymbol{l}\,=\,\{ l^{(i)}_* \}_{1\leqslant i \leqslant n},\boldsymbol{\alpha })$
is called an
$(\boldsymbol{x},\, \boldsymbol{\nu })$
-parabolic connection of rank
$r$
and degree
$d$
if:
-
(1)
$(E,\, \boldsymbol{l}\, =\, \{ l^{(i)}_* \}_{1\leqslant i \leqslant n})$ is an
$\boldsymbol{x}$ -quasi-parabolic bundle of rank
$r$ and degree
$d$ ;
-
(2)
$\nabla \,\colon \, E \,\longrightarrow \,E\otimes K_{X}(D)$ is a logarithmic connection whose residue
${\rm res}_{x_i}(\nabla )\,\colon \, E|_{x_i}\,\longrightarrow \, E|_{x_i}$ at each point
$x_i$ for
$1\,\leqslant \, i\,\leqslant \, n$ satisfies the condition
$({\rm res}_{x_i}(\nabla )-\nu ^{(i)}_j {\rm Id}_{E|_{x_i}}) (l^{(i)}_j) \,\subset \, l_{j+1}^{(i)}$ for all
$j\,=\,0,\,\ldots ,\,r-1$ .
Definition 4.10. An
$(\boldsymbol{x},\ \boldsymbol{\nu })$
-parabolic connection
$(E,\ \nabla ,\ \boldsymbol{l},\,\boldsymbol{\alpha })$
is said to be
$\boldsymbol{\alpha }$
-stable if the inequality


holds for every subbundle
$0\,\neq \, F\,\subsetneq \, E$
for which
$\nabla (F)\,\subset \, F\otimes \Omega^1_X(D)$
. We say that
$(E,\ \nabla ,\ \boldsymbol{l},\,\boldsymbol{\alpha })$
is
$\boldsymbol{\alpha }$
-semistable if the weaker inequality “
$\leqslant$
’ holds (instead of “
$\lt$
’).
Remark 4.11. In the non-abelian Hodge correspondence (see [Reference SimpsonSim1]), the parabolic weight
$\boldsymbol{\alpha }$
is an important datum needed to connect to the parabolic Higgs bundles. Since we focus on the algebraic moduli spaces, we omit the parabolic weight
$\boldsymbol{\alpha }$
to denote the parabolic connection. So we denote a parabolic connection by
$(E,\,\nabla ,\, \boldsymbol{l})$
, even though there is the parabolic weight
$\boldsymbol{\alpha }$
in the background.
In the inequality for the stability condition in Definition 4.10, we may replace the parabolic weight with a tuple of rational numbers which is very close to
$\boldsymbol{\alpha }$
. We have the following.
Theorem 4.12 ([Reference InabaIna, Theorem 2.2]).The moduli space
${\mathcal M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
of
$\boldsymbol{\alpha }$
-stable
$(\boldsymbol{x},\boldsymbol{\nu })$
-parabolic connections exists as a quasi-projective scheme over
$\textrm { Spec}\mathbb{C}$
.
Let
$(E,\, \boldsymbol{l})$
be a
$\boldsymbol{x}$
-quasi-parabolic bundle. Set

We denote the invertible elements of
$\textrm { End}(E,\,\boldsymbol{l})$
by
${\textrm { Aut}}(E,\,\boldsymbol{l})$
.
Definition 4.13. A
$\boldsymbol{x}$
-quasi-parabolic bundle
$(E,\, \boldsymbol{l})$
is said to be simple if
$\textrm { End}(E,\, \boldsymbol{l}) \,=\,\mathbb{C}$
, which is equivalent to the condition
${\textrm { Aut}}(E,\, \boldsymbol{l}) \,=\,\mathbb{C}^{*}$
.
Remark 4.14. For each
$x_i$
, let
${\bf H}_{x_i}\subset {\rm GL}_r(\mathbb{C})$
be the Borel subgroup consisting of the upper triangular matrices. Then a framed
${\rm GL}_r(\mathbb{C})$
–bundle with respect to the structure subgroups
$({\bf H}_{x_i}\subset {\rm GL}_r(\mathbb{C}))_{1\leqslant i\leqslant n}$
is equivalent to an
$\boldsymbol{x}$
-quasi-parabolic bundle. The above definition of simple quasi-parabolic bundle is equivalent to that of a simple framed bundle with this structure subgroup in the sense of Definition 3.1. A framed
${\rm GL}_r(\mathbb{C})$
–connection with respect to the structure subgroups
$({\bf H}_{x_i}\subset {\rm GL}_r(\mathbb{C}))_{1\leqslant i\leqslant n}$
is equivalent to an
$(\boldsymbol{x},\ \boldsymbol{0})$
-parabolic connection, where
${\bf 0}\,\in \,\mathbb{C}^{nr}$
is defined by
$\nu ^{(i)}_j\,=\,0$
for any
$i,\,j$
.
For an
$(\boldsymbol{x},\, \boldsymbol{\nu })$
-parabolic connection
$(E,\,\nabla ,\, \boldsymbol{l})$
, set

and denote by
${\textrm { Aut}}(E,\,\nabla ,\,\boldsymbol{l})$
the invertible elements in
$\textrm { End}(E,\,\nabla ,\,\boldsymbol{l})$
.
Definition 4.15. An
$(\boldsymbol{x},\, \boldsymbol{\nu })$
-parabolic connection
$(E,\,\nabla ,\, \boldsymbol{l})$
is said to be simple if
$\textrm { End} (E,\,\nabla ,\, \boldsymbol{l}) \,=\,\mathbb{C}$
, which is equivalent to the condition
${\textrm { Aut}} (E,\,\nabla ,\, \boldsymbol{l}) \,=\,\mathbb{C}^*$
.
An argument similar to the one in Proposition 3.5 proves the following proposition.
Proposition 4.16. The moduli space
${\mathcal M}_{{\rm PC}}(\boldsymbol{\nu })$
of simple
$(\boldsymbol{x},\boldsymbol{\nu })$
-parabolic connections exists as an algebraic space. The moduli space
${\mathcal M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
of
$\boldsymbol{\alpha }$
-stable
$(\boldsymbol{x},\boldsymbol{\nu })$
-parabolic connections is a Zariski open subspace of
${\mathcal M}_{{\rm PC}}(\boldsymbol{\nu })$
.
Proposition 4.17. Assume that either
$g\,=\,0$
or
$g\,=\,1$
and:
-
(1)
$nr-2r-2\,\gt \,0$ if
$g\,=\,0$ ;
-
(2)
$n\,\geqslant \, 2$ if
$g\,=\,1$ .
Let
${\mathcal M}^e_{{\rm FC}}(d)^{\circ }$
be the open subspace of
$\mathcal{M}^{e}_{{\rm FC}}(d)$
defined in (3.7) for
$H\,=\,\{e\}$
. Then the restriction
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}$
of the nondegenerate
$2$
-form
$\Theta ^e$
in (4.4) is
$d$
-closed.
Proof. Consider the forgetful map
$p_1\,\colon \, \mathcal{M}^{e}_{\textrm {FC}}(d)^{\circ } \,\longrightarrow \, \mathcal{N}^e(d)$
in (4.5), and take a sufficiently small analytic open subset
$U\, \subset \, \mathcal{N}^e(d)$
. For a holomorphic section
$s\,\colon \, U \,\longrightarrow \, p_1^{-1}(U)$
of
$p_1$
such that

we have
$d \:\! \Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}}(d)^{\circ }}\,=\,0$
by the same argument as in the proof of Theorem 4.7. We will now construct such a section
$s$
.
Let
$\mathcal{N}_{{\rm par}} (d)$
be the moduli space of simple
$\boldsymbol{x}$
-quasi-parabolic bundles of rank
$r$
and degree
$d$
. For each
$x \,\in \, D$
, set the complex Lie proper subgroup
$H_x$
to be the subgroup of
${\rm GL}(r,\mathbb{C})$
consisting of the upper triangular matrices. It may be mentioned that an
$\boldsymbol{x}$
-quasi-parabolic bundle is the same as a framed bundle with respect to
$\{ H_x\}_{x \in D}$
. For a framed bundle
$(E,\,\phi )$
, we can associate a quasi-parabolic bundle
$(E,\,\boldsymbol{l})$
whose filtration
$l^{(i)}_*$
on
$E|_{x_i}$
is induced by the framing
$\phi _{x_i}$
of
$E|_{x_i}$
for each
$1\,\leqslant \, i\,\leqslant \, n$
. Setting

there is a natural morphism

Take an element

such that
$\sum _{i,j} \nu _{j}^{(i)} \,=\, -d$
. Let
$\mathcal{M}_{{\rm PC}} (\boldsymbol{\nu })^{\circ }$
be the moduli space defined by

Define the locally closed subspace
$\mathcal{M}_{{\rm FC}}^{e} (\boldsymbol{\nu })^{\circ }$
of
$\mathcal{M}_{{\rm FC}}^{e} (d)^{\circ }$
by

In the above definition we have
$\phi \,=\,\{\phi _x\}_{x\in D}$
, where
$\phi _x\,\colon \, \mathcal{O}_X^{\oplus r}|_x \,\longrightarrow \, E\vert _x$
are isomorphisms defining a framing of
$E$
over
$D$
. Since a framing defines a parabolic structure, there is a natural map

Notice that
$\mathcal{M}_{{\rm PC}} (\boldsymbol{\nu })^{\circ }$
is non-empty by virtue of the assumption in the proposition, and so is
$\mathcal{M}_{{\rm FC}}^{e} (\boldsymbol{\nu })^{\circ }$
. Consider the complex

for
$\{ H_x\}_{x \in D}$
. Here,
${\rm ad}_{\phi } (E_G)$
and
${\rm ad}^n_{\phi } (E_G) \otimes K_X (D)$
are defined as in (2.16). The tangent space of
$\mathcal{M}_{{\rm PC}} (\boldsymbol{\nu })^{\circ }$
at
$(E,\,\nabla , \,\boldsymbol{l})$
is
$\mathbb{H}^1(\mathcal{D}^{{\rm par}}_{\bullet })$
. There is also a natural morphism

which is étale locally an affine space bundle whose fiber is isomorphic to
$H^0(X,\,{\rm ad}^n_{\phi }(E_G)\otimes K_X(D))$
. So there is a non-empty analytic open subset
$U\,\subset \, {\mathcal N}^{{\rm par}}(d)^{\circ }$
with a local section
$s^{{\rm par}}\,\colon \, U \,\longrightarrow \, (p_0^{{\rm par}})^{-1}(U)$
of
$p_0^{{\rm par}}$
. Consider the commutative diagram

whose left square is Cartesian. The local section
$s^{{\rm par}}$
of
$p_0^{{\rm par}}$
produces a local section

of
$p_1|_{\mathcal{M}_{{\rm FC}}^{e} (\boldsymbol{\nu })^{\circ }}$
. Let
$\Theta _{{\rm par}}$
be the symplectic structure on
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }} (\boldsymbol{\nu })$
constructed in [Reference InabaIna]. This symplectic form
$\Theta _{{\rm par}}$
is described as follows:

in terms of the Čech cohomology constructed using an affine open covering
$\{ U_{\alpha }\}$
(see [Reference InabaIna, Proposition 7.2]). The symplectic form
$\Theta _{{\rm par}}$
is
$d$
-closed [Reference InabaIna, Proposition 7.3]. Since the images of
$\Theta ^e$
and
$\Theta _{{\rm par}}$
in
$\mathbb{H}^2(\mathbb{K})$
have the same description in terms of Čech cohomology (see (4.4) and (4.18)), it follows that

Since
$\Theta ^{{\rm par}}$
is
$d$
-closed, so is
$\iota ^* \Theta ^e|_{\mathcal{M}_{{\rm FC}}^{e} (d)^{\circ } }$
. Set
$s\,\,:=\,\,\iota \circ s_1\,\colon \, U\,\longrightarrow \, p_1^{-1}(U)$
, which is a local section of
$U_1$
. Then the pullback
$s^*(\Theta ^e)\,=\, s_1^*\iota ^*\Theta ^e|_{\mathcal{M}_{{\rm FC}}^{e} (d)^{\circ } }$
is
$d$
-closed and so is
$\Theta ^e|_{\mathcal{M}_{{\rm FC}}^{e} (d)^{\circ } }$
by the first remark in this proof.
4.4 Symplectic structure on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
In § 4.2,a 2-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
was constructed. In the previous section, we considered the restriction of
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)^{\circ } \,\subset \, \mathcal{M}^{e}_{{\rm FC}} (d)$
. It was shown that this restriction is a symplectic form. Note that in the proof of the
$d$
-closedness of this restriction, we used irreducibility of
$\mathcal{M}^{e}_{{\rm FC}} (d)^{\circ }$
(Proposition 3.8) implicitly. In this section, we shall show that the 2-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
is a symplectic form. In the proof of the
$d$
-closedness of
$\Theta ^e$
, we will use the
$d$
-closedness of
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}} (d)^{\circ }}$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)^{\circ }$
for another effective divisor
$\widetilde {D}$
, instead of any argument on the irreducibility of
$\mathcal{M}^{e}_{{\rm FC}} (d)$
.
Proposition 4.18. The
$2$
-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
is nondegenerate.
Proof. Recall that the 2-form
$\Theta ^e$
is defined in (4.4). Let
$\xi _{\Theta ^H} \,\colon \, \mathbb{H}^1({\mathcal C}_{\bullet })\,\longrightarrow \, \mathbb{H}^1({\mathcal C}_{\bullet })^*$
be the homomorphism induced by
$\Theta ^H$
. Set
$\mathcal{C}_0 \,\,:=\, \,{\mathcal E}nd(E)(-D)$
and
$\mathcal{C}_1 \,\,:=\, \,{\mathcal E}nd(E)\otimes K_X(D)$
. For the above defined map
$\xi _{\Theta ^H}$
, we have the following commutative diagram whose rows are exact:

where
$b_1,\,b_2,\,b_3,\,b_4$
are Serre duality isomorphisms. So, from the five lemma, it follows that
$\xi _{\Theta ^H}$
is an isomorphism. In other words, the
$2$
-form
$\Theta ^H$
is nondegenerate.
Next, we shall investigate the
$d$
-closedness of the
$2$
-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
.
Lemma 4.19. Let
$(E_0,\, \phi _0 , \, \nabla _0)$
be a point on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
. For this point on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
, there exist a reduced effective divisor
$\widetilde {D}$
and an isomorphism
$\widetilde {\phi }_0 \,\colon \, \mathcal{O}_{\widetilde {D}}^{\oplus r} \,\longrightarrow \, E_0|_{\widetilde {D}}$
such that
$\widetilde {D} \,\supset \, D$
,
$\widetilde {\phi }_0 |_D \,=\, \phi _0$
and
$(E_0,\,\widetilde {\phi }_0)$
is simple.
Proof. Take a reduced effective divisor
$\widetilde {D}$
such that
$\widetilde {D} \,\supset \, D$
and
$H^0(X, \,\mathcal{E}nd (E_0) (-\widetilde {D}) ) \,=\,0$
. Moreover, take an isomorphism
$\widetilde {\phi }_0 \,\colon \, \mathcal{O}_{\widetilde {D}}^{\oplus r} \,\longrightarrow \, E_0|_{\widetilde {D}}$
such that
$\widetilde {\phi }_0 |_D \,=\, \phi _0$
. We will show that
$(E_0,\,\widetilde {\phi }_0)$
is simple. For that, let
$\textbf {g}$
be an automorphism of
$(E_0,\,\widetilde {\phi }_0)$
, that is,
$\textbf {g}$
is an automorphism of
$E_0$
such that the diagram

is commutative. So the restriction
$\textbf {g}|_{\widetilde {D}}$
is the identity map. Therefore, we have

Since
$H^0(X, \,\mathcal{E}nd (E_0) (-\widetilde {D})) =\,0$
, it follows that
$\textbf {g}\,=\, {\rm Id}_{E_0}$
. In other words,
$(E_0,\,\widetilde {\phi }_0)$
is simple.
Take an open covering

where each
$\Sigma _{m_0}^{d}$
is the open substack of
$\mathcal{M}^{e}_{{\rm FC}} (d)$
defined in (3.1). Recall that a very ample line bundle
$\mathcal{O}_{X}(1)$
on the curve
$X$
is fixed; set
$\theta _d(m)\,\,:=\,\,r d_X m+d+r(1-g)$
, where
$d_X\,\,:=\,\, \deg \mathcal{O}_X(1)$
and
$g$
is the genus of
$X$
. The above open substack
$\Sigma _{m_0}^{d}$
is the fibered category whose objects are simple framed
${\rm GL}(r,\mathbb{C})$
–connections
$(E,\,\phi ,\,\nabla )$
on
$X\times S$
such that:
-
(a)
$H^1(X,\, E_s (m_0-1))\,=\,0$ for each
$s\,\in \, S$ ;
-
(b)
$\chi (E_s(m))\,= \,\theta _d(m)$ for each
$s \,\in \, S$ and all
$m \,\in \, \mathbb{Z}$ .
By the argument in the proof of Proposition 3.5, the substack
$\Sigma _{m_0}^{d}$
is of finite type.
Lemma 4.20. There exists a reduced effective divisor
$\widetilde {D} \,\supset \, D$
such that for any points

there is an isomorphism
$\widetilde {\phi }\, \colon \, \mathcal{O}_{\widetilde {D}}^{\oplus r} \,\longrightarrow \,E|_{\widetilde {D}}$
satisfying the conditions that
$\widetilde {\phi }|_D \,=\, \phi$
and
$(E,\,\widetilde {\phi })$
is simple.
Proof. Take a point
$s_0 \,=\, (E,\,\phi , \, \nabla ) \, \in \, \Sigma _{m_0}^{d}$
. By Lemma 4.19, there exists a reduced effective divisor
$\widetilde {D}_{s_0}$
together with an isomorphism
$\widetilde \phi \,\colon \, \mathcal{O}_{\widetilde {D}_{s_0}}^{\oplus r} \,\longrightarrow \, E|_{\widetilde {D}_{s_0}}$
satisfying the following three conditions:
$\widetilde {D}_{s_0} \,\supset \, D$
,
$\widetilde \phi |_D\, =\, \phi$
and
$(E,\,\widetilde \phi )$
is simple.
Take an open substack
$U_s \,\subset \, \Sigma _{m_0}^{d}$
, where
${s_0} \,\in \, U_{s_0}$
and
$U_{s_0}$
is small enough, and take a universal family
$(\widetilde {E}, \, \psi ,\, \widetilde \nabla )$
over
$X \times U_{s_0}$
. Since
$\widetilde E$
is locally trivial, we may take a lift
$\widetilde {\psi } \,\colon \, \mathcal{O}_{\widetilde {D}_{s_0} \times U_{s_0}}^{\oplus r} \,\longrightarrow \,\widetilde {E}|_{\widetilde {D}_{s_0}\times U_{s_0}}$
such that
$\widetilde \psi |_{D\times U_{s_0}} = \psi$
. Note that
$(\widetilde {E}, \, \widetilde \psi )|_{X \times {s_0} } \cong (E, \, \widetilde \phi )$
, which is simple. Since we have the requirement that
$H^0(X \times s ,\, \mathcal{E}nd (\widetilde E|_{X \times s}) (-\widetilde D_{s_0}) )\,=\,0$
is an open condition, we may assume that
$(\widetilde {E}, \, \widetilde \psi )$
is a family of simple framed bundles. Consider an open covering
$ \Sigma _{m_0}^{d} \,=\, \bigcup _{s_0} U_{s_0}$
. Since
$\Sigma _{m_0}^{d}$
is of finite type, we may cover
$ \Sigma _{m_0}^{d}$
by a finite number of the open substacks
$\{U_{s_0}\}_{s_0}$
:

where
$s_1,\,\ldots ,\,s_m$
are points on
$ \Sigma _{m_0}^{d}$
. Now take

Then, by the construction of
$\widetilde {D}$
, for any points
$(E,\,\phi , \, \nabla )\,\in \, \Sigma _{m_0}^{d}$
, there exists an isomorphism
$\widetilde {\phi } \,\colon \, \mathcal{O}_{\widetilde {D}}^{\oplus r} \,\longrightarrow \, E|_{\widetilde {D}}$
such that
$\widetilde \phi |_D \,=\, \phi$
and
$(E,\,\widetilde {\phi })$
is simple.
Theorem 4.21. The nondegenerate
$2$
-form
$\Theta ^e$
on
$\mathcal{M}^{e}_{{\rm FC}} (d)$
defined by (4.4) is
$d$
-closed.
Proof. Consider the open covering
$\mathcal{M}^{e}_{{\rm FC}} (d)\,=\, \bigcup _{m_0} \Sigma ^d_{m_0}$
in (4.19). It is enough to prove that the restriction
$\Theta ^e|_{\Sigma ^d_{m_0}}$
is
$d$
-closed for each
$m_0$
. Take a reduced effective divisor
$\widetilde D$
as in Lemma 4.20. Let
$\mathcal{M}^{e}_{{\rm FC}} (d,\,\widetilde {D})$
be the Deligne–Mumford stack constructed in Proposition 3.5 for
$\widetilde D$
. Let
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})^{\circ }$
be the Deligne–Mumford stack whose objects are objects of
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})$
such that the underlying framed bundles are simple. In other words, we have

Taking the degree of
$\widetilde {D}$
to be sufficiently large, the canonical
$2$
-form
$\Theta ^e|_{\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})^{\circ }}$
on
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})^{\circ }$
is
$d$
-closed by Propositions 4.7 and 4.17. Define a moduli space
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D},D)$
as follows:

Let
$\iota \,:\, \mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D},D)\, \longrightarrow \, \mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})^{\circ }$
be the natural inclusion map and
$\pi$
the natural map from
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D},D)$
to
$\mathcal{M}^{e}_{{\rm FC}} (d)$
induced by the restriction of framings to
$D$
:

This map
$\pi$
is smooth. By Lemma 4.20, the open substack
$\Sigma _{m_0}^{d}$
is contained in the image of
$\pi$
. We consider the following maps.

Let
$\Theta ^e_{\widetilde {D}}$
be the 2-form on
$\mathcal{M}^{e}_{{\rm FC}} (d,\widetilde {D})^{\circ }$
defined in (4.4). By the definition of
$\Theta ^e$
and
$\Theta ^e_{\widetilde {D}}$
, which are described by the same formula via the Čech cohomology, we have

As
$\Theta ^e_{\widetilde {D}}$
is
$d$
-closed by Propositions 4.7 and 4.17, we conclude that
$\pi ^* \Theta ^e$
is
$d$
-closed. Since
$\pi$
is smooth, and the image of
$\pi$
contains the open substack
$\Sigma _{m_0}^{d}$
, it follows that
$\Theta ^e|_{\Sigma ^d_{m_0}}$
is
$d$
-closed.
4.5 Symplectic structure on
$\mathcal{M}^{H}_{{\rm FC}} (d)$
Fix a complex Lie proper subgroup
$H_x\,\subsetneq \, {\rm GL}(r,\mathbb{C})$
for each
$x\,\in \, D$
.
Consider the complexes
$\mathcal{D}_{\bullet }$
and
$\mathbb{K}$
constructed in (2.16) and (4.3) respectively. Note that the pairing
${\rm ad}(E_G)\otimes {\rm ad} (E_G)\, \longrightarrow \, {\mathcal O}_X$
in (2.5) produces a pairing

The restriction of the pairing
$\widehat {\sigma }$
(see (2.5))

and the homomorphism

constructed using
$\widehat \sigma$
, together produce a homomorphism

of complexes. Let

be the homomorphism of hypercohomologies induced by this homomorphism of complexes. Now, the composition of the natural homomorphism

with the above homomorphism of hypercohomologies produces a pairing

In terms of the Čech cohomology with respect to an affine open covering
$\{ U_{\alpha }\}$
, the pairing
$\Theta ^H$
in (4.20) is of the form

This pairing in (4.20) gives a 2-form on
$\mathcal{M}^{H}_{{\rm FC}} (d)$
. We also denote by
$\Theta ^H$
this 2-form on
$\mathcal{M}^{H}_{{\rm FC}} (d)$
. Then
$\Theta ^H$
is nondegenerate by the argument as after [Reference Biswas, Inaba, Komyo and SaitoBIKS, Theorem 5] by applying [Reference Biswas, Logares and Peón-NietoBLP2, Proposition 4.1]. Now it will be shown that
$\Theta ^H$
is
$d$
-closed.
Definition 4.22. Let
$\mathcal{M}^{e}_{\textrm {FC}}(d)_{\mathfrak{h}^{\perp }}$
be the stack over the category of locally Noetherian schemes whose objects are quadruples
$(S,\, E, \,\phi =\{\phi _{x\times S} \}_{x\in D} ,\,\nabla )$
that satisfy (1), (3) and (5) in Definition 3.1 and the following
$(2)''$
and
$(4)''$
.
-
(2)′′
$\phi _{x\times S}$ be a section of the structure map
\begin{align*} {\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r}, \, E\big \vert _{x\times S}) \,\longrightarrow \, x\times S\, . \end{align*}
\begin{align*}\varphi _{x \times S}\,\,\colon \,\, \mathcal{O}_{x\times S}^{\oplus r}\,\xrightarrow {\ \sim \ }\, E\big \vert _{x\times S}\end{align*}
$x\times S\,\longrightarrow \, {\rm Isom}_{S} (\mathcal{O}_{x\times S}^{\oplus r}, \, E\big \vert _{x\times S})$ .
-
(4)′′ Let
${\rm res}_{x\times S}(\nabla ) \,\in \, {\rm End}(E)\big \vert _{x\times S}$ be the residue matrix of the connection
$\nabla$ along
$x\times S$ . Then
$\phi ^{-1}_{x \times S} \circ {\rm res}_{x\times S}(\nabla ) \circ \phi _{x \times S} \,\in \, \mathfrak{h}^{\perp } \otimes \mathcal{O}_{S}$ .
A morphism

in
$\mathcal{M}^{e}_{\textrm {FC}}(d)_{\mathfrak{h}^{\perp }}$
is a Cartesian square

such that the diagram

commutes and the composition
$(\phi '_{x\times S})^{-1} \circ \sigma |_{x\times S}\circ \phi _{x\times S}$
coincides with the identity map of
$\mathcal{O}_{x\times S}^{\oplus r}$
for each
$x\,\in \, D$
.
Theorem 4.23. The nondegenerate
$2$
-form
$\Theta ^H$
on
$\mathcal{M}^{H}_{{\rm FC}} (d)$
defined by (4.20) is
$d$
-closed.
Proof. Consider the diagram

where
$\pi _1$
and
$\pi _2$
are the natural maps. It is straightforward to check that

Since
$\Theta ^e$
is
$d$
-closed, the form
$\pi _2^*\Theta ^H$
is also
$d$
-closed. This implies that
$\Theta ^H$
is
$d$
-closed, because the map
$\pi _2$
is dominant.
4.6 Poisson structure
In this subsection, we will see the details of the Poisson structure mentioned in the introduction. This is influenced by a construction done in [Reference Biswas, Bottacin and GómezBBG].
Let
$\mathcal{M}_{\textrm {{C}}}(d)$
be the moduli space of pairs
$(E,\, \nabla )$
, where
$E$
is a holomorphic vector bundle on
$X$
of rank
$r$
and degree
$d$
, and
$\nabla$
is a logarithmic connection on
$E$
whose singular part is contained in
$D$
, such that
$(E,\,\nabla )$
is simple in the sense that the endomorphisms of
$E$
preserving
$\nabla$
are just the constant scalar multiplications. In [Reference NitsureNit], Nitsure constructed the moduli space
${\mathcal M}^{{\rm ss}}_{{\rm C}}(d)$
of semistable logarithmic connections, which contains the moduli space of stable logarithmic connections
${\mathcal M}^{{\rm s}}_{{\rm C}}(d)$
as a Zariski open subset. By its definition, our moduli space
$\mathcal{M}_{\textrm {{C}}}(d)$
contains
${\mathcal M}^{{\rm s}}_{{\rm C}}(d)$
as a Zariski open subspace. Recall that a description of the tangent space of this moduli space is given in [Reference NitsureNit]. For
$(E,\, \nabla )\, \in \,\mathcal{M}_{\textrm {{C}}}(d)$
, the tangent space of
$\mathcal{M}_{\textrm {{C}}}(d)$
at
$(E,\nabla )$
is

where
${\mathcal C}_0\,=\,{\mathcal End}(E)(-D)$
,
${\mathcal C}_1\,=\,{\mathcal End}(E)\otimes K_X(D)$
and the map
${\mathcal End}(E) \,\longrightarrow \, {\mathcal C}_1$
is defined by
$u \,\longmapsto \,\nabla \circ u- u \circ \nabla$
. The cotangent space is

over which there is a canonical pairing

Consider the open subspace

of the moduli space
${\mathcal M}^e_{\textrm { FC}}(d)$
of simple framed connections. Then, there is a natural forgetful map

and the induced map
$\pi ^*$
on the cotangent spaces makes the diagram

commutative. The bottom horizontal arrow satisfies the Jacobi identity, because it corresponds to the symplectic form on the moduli space
${\mathcal M}^e_{\textrm { FC}}(d)$
given in Theorem4.21. So the pairing in (4.21) is also skew-symmetric and satisfies the Jacobi identity. Thus, the following corollary is obtained.
Corollary 4.24. The moduli space
$\mathcal{M}_{\textrm {{C}}}(d)$
has a Poisson structure defined by the Poisson bracket in (4.21). Furthermore, the morphism
$\pi$
in (4.22) becomes a Poisson map.
We will see a slightly different view of the Poisson structure on the moduli space
$\mathcal{M}_{\textrm {{C}}}(d)$
. Set

By associating the coefficients of the characteristic polynomial of
${\sf res}_{x_i}(\nabla )$
at each point
$x_i\in D$
, we can define a morphism

whose fiber
${\mathcal M}_{\textrm { C}}(\boldsymbol{a})$
over
$\boldsymbol{a}\,\in \, A$
is smooth for generic
$\boldsymbol{a}$
but has singularities for special
$\boldsymbol{a}$
. Consider the moduli space of simple parabolic connections

For the open subspace

of
${\mathcal M}_{\textrm { PC}}(d)$
, there is a canonical morphism

which is generically finite. Set
$\Lambda \,\,:=\,\,\left \{ (\nu ^{(i)}_j)^{1\leqslant i\leqslant n}_{0\leqslant j\leqslant r-1} \, \in \, \mathbb{C}^{nr} \ \middle | \ d+\sum _{i,j}\nu ^{(i)}_j\,=\,0 \right \}$
. Then we have a smooth morphism

whose fiber over any
$\boldsymbol{\nu }\,\in \,\Lambda$
is the moduli space
${\mathcal M}_{\textrm { PC}}(\boldsymbol{\nu })$
of
$\boldsymbol{\nu }$
-parabolic connections. The morphism in (4.24) induces a map between the fibers of (4.23) and (4.25)

which is an isomorphism for generic
$\boldsymbol{a}$
and a resolution of singularities of
${\mathcal M}_{\textrm { C}}(\boldsymbol{a})$
for special
$\boldsymbol{a}$
, where
$\boldsymbol{a}\,=\,(a^{(i)}_j)$
is determined by
$\boldsymbol{\nu }\,=\,(\nu ^{(i)}_j)$
as follows:

Roughly speaking, the moduli space
${\mathcal M}_{\textrm { C}}(\boldsymbol{a})$
for special
$\boldsymbol{a}$
gives a partial resolution of singularities of the corresponding character variety, which we will define precisely later in (5.24). The meaning of the singularities of character varieties and their exceptional loci in the moduli space
${\mathcal M}_{\textrm { PC}}(\boldsymbol{\nu })$
(or precisely,
${\mathcal M}_{\textrm { PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
) is explained in [Reference IwasakiIw2] and [Reference Inaba, Iwasaki and SaitoIIS] from the viewpoint of the isomonodromic deformation, and their classification in the case of Painlevé equations is given in [Reference Saito and TerajimaSaTe].
Setting

we can define a complex
${\mathcal D}^{\textrm { par}}_0\, \longrightarrow \, \widetilde {\mathcal D}^{\textrm { par}}_1$
,
$u \,\longmapsto \, \nabla \circ u-u \circ \nabla$
, which induces complexes
$\widetilde {\mathcal D}^{\textrm { par}}_0 \,\longrightarrow \, {\mathcal D}^{\textrm { par}}_1$
and
$\widetilde {\mathcal D}^{\textrm { par}}_0\,\longrightarrow \, \widetilde {\mathcal D}^{\textrm { par}}_1$
. The tangent space of the moduli space
${\mathcal M}_{\textrm { PC}}(d)$
is
$T{{\mathcal M}_{\textrm { PC}}(d)}\,=\, \mathbb{H}^1({\mathcal D}^{\textrm { par}}_0 \to \widetilde {\mathcal D}^{\textrm { par}}_1)$
and the cotangent space is its dual

So we can define a canonical pairing

Let
$B$
be the Borel subgroup of
${\rm GL}(r,\mathbb{C})$
consisting of upper triangular matrices, and let
$U$
be the subgroup of
$B$
consisting of matrices whose diagonal entries are
$1$
. Consider the open subspace

of
${\mathcal M}^U_{\textrm { FC}}(d)$
, which is the moduli space of framed connections in Definition 3.1 with
$H\,=\,U$
. Associating the corresponding parabolic connection, we can define a morphism

which becomes a
$\big (\prod _{D}B/U\big )\big /\mathbb{C}^*$
-bundle. By construction, the diagram

is commutative. The lower horizontal arrow is the Poisson bracket corresponding to the symplectic form on the moduli space
${\mathcal M}^U_{\textrm { FC}}(d)$
given by Theorem4.23. So the pairing in (4.26) defines a Poisson structure on the moduli space
${\mathcal M}_{\textrm { PC}}(d)$
, and the morphism in (4.27) is a Poisson map.
We can also see that the pairing in (4.26) commutes with the Poisson bracket on
${\mathcal M}_{\textrm { PC}}(\boldsymbol{\nu })$
corresponding to the symplectic form. So the canonical inclusion
${\mathcal M}_{\textrm { PC}}(\boldsymbol{\nu }) \, \hookrightarrow \,{\mathcal M}_{\textrm { PC}}(d)$
is also a Poisson map.
The canonical map
$\mathbb{H}^1({\mathcal C}_0\to {\mathcal End}(E)\otimes K_X) \,\longrightarrow \, \mathbb{H}^1(\widetilde {\mathcal D}^{\textrm { par}}_0 \,\rightarrow \, {\mathcal D}^{\textrm { par}}_1)$
coincides with the map

on the cotangent spaces induced by the morphism in (4.24), which means that the Poisson bracket in (4.21) commutes with that in (4.26). Combining the above, the following corollary is obtained.
Corollary 4.25. The moduli space
${\mathcal M}_{\textrm { PC}}(d)$
of parabolic connections has a Poisson structure defined by the Poisson bracket given in (
4.26
). Furthermore, the morphism
${\mathcal M}_{\textrm { PC}}(d)' \, \longrightarrow \, \mathcal{M}_{\textrm {{C}}}(d)$
in (
4.24
) becomes a Poisson map for this Poisson structure.
5. The moduli space of parabolic connections is not affine
5.1 Moduli space of parabolic connections and parabolic Higgs bundles
Throughout this section, we assume that
$k$
is an algebraically closed field of arbitrary characteristic.
Let

be an
$n$
-pointed smooth projective curve of genus
$g$
over
$k$
, where
$x_1, \,\ldots ,\,x_n$
are distinct
$k$
-valued points of
$X$
. Denote the reduced divisor
$x_1+\cdots +x_n$
on
$X$
by
$D$
. Take a positive integer
$r$
which is not divisible by the characteristic of
$k$
, and take an integer
$d$
and an element

such that the equality
$\sum _{i,j} \nu ^{(i)}_j \,=\, -d$
holds in
$k$
. Take a collection of rational numbers

satisfying the conditions:
-
(i)
$0\,\lt \,\alpha ^{(i)}_1\,\lt \,\cdots \,\lt \,\alpha ^{(i)}_r\,\lt \,1$ ;
-
(ii)
$\alpha ^{(i)}_j\,\neq \,\alpha ^{(i')}_{j'}$ for
$(i,\,j)\,\neq \, (i',\,j')$ .
An
$(\boldsymbol{x},\ \boldsymbol{\nu })$
-parabolic connection on
$X$
is defined exactly in the same way as Definition 4.9. Although a parabolic connection includes the data of a parabolic weight, we omit it and simply write
$(E,\,\nabla ,\, \boldsymbol{l})$
. The definition of
$\boldsymbol{\alpha }$
-stability of a parabolic connection is also defined in the same way as Definition 4.10.
In the proof of the existence of the moduli space of stable parabolic connections in [Reference InabaIna, Theorem 2.2] , we used the embedding to the moduli space of parabolic
$\Lambda^1_D$
-triples ([Reference Inaba, Iwasaki and SaitoIIS, Theorem 5.1]; this argument also works over a field of arbitrary characteristic. So we have the following theorem.
Theorem 5.1. There exists a coarse moduli scheme
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
of
$\boldsymbol{\alpha }$
-stable
$(\boldsymbol{x},\, \boldsymbol{\nu })$
-parabolic connections on a smooth projective curve
$X$
over
$k$
. Furthermore,
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
is quasi-projective over
$k$
.
Definition 5.2 [Reference MumfordMu, Lecture 14, page 99]. Let
$Y$
be a projective variety over
$k$
, and let
${\mathcal O}_Y(1)$
be a very ample line bundle on
$Y$
. Take an integer
$n_0$
. A coherent sheaf
$E$
on
$Y$
is called
$n_0$
-regular if

holds for all
$i\,\gt \,0$
.
We will denote
$E\otimes {\mathcal O}_Y(m)$
by
$E(m)$
for an integer
$m$
.
Definition 5.3. Let
$Y$
be a projective variety over
$k$
. A set
$\mathcal T$
of coherent sheaves on
$Y$
is called bounded if there is a scheme
$S$
of finite type over
$k$
, and a coherent sheaf
$\mathcal E$
on
$Y\times S$
such that for any member
$E\,\in \, {\mathcal T}$
, there is a
$k$
-valued point
$s\,\in \, S$
such that
${\mathcal E}|_{Y\times \{s\}}\,\cong \, E$
.
The following lemma is a useful tool to show the boundedness of a family of coherent sheaves.
Lemma 5.4 [Reference KleimanKl, Theorem 1.13].Let
$Y$
be a projective variety over
$k$
, and let
${\mathcal O}_Y(1)$
be a very ample line bundle on
$Y$
. Then a set
$\mathcal T$
of coherent sheaves on
$Y$
is bounded if and only if there is an integer
$n_0$
such that all the members of
$\mathcal T$
are
$n_0$
-regular and the set

of Hilbert polynomials
$\chi (E(m))$
in
$m$
of the members
$E$
of
$\mathcal T$
is finite.
In the same way as Proposition 4.16, the moduli space of simple
$(\boldsymbol{x}, \,\boldsymbol{\nu })$
-parabolic connections
$\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu })$
is an algebraic space over
$k$
, and the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
of
$\boldsymbol{\alpha }$
-stable
$(\boldsymbol{x},\, \boldsymbol{\nu })$
-parabolic connections is a Zariski open subspace of
$\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu })$
. Since
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
is quasi-projective over
$k$
, we can take an integer
$n_0$
such that for all
$(E,\,\nabla ,\,\boldsymbol{l})\,\in \, \mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
, the underlying vector bundle
$E$
is
$n_0$
-regular.
Fix a line bundle
$L$
on
$X$
and a logarithmic connection

such that
${\rm res}_{x_i}(\nabla _L)\,=\,\sum _{j=0}^{r-1}\nu ^{(i)}_j$
for all
$1\,\leqslant \, i\,\leqslant \, n$
. Set


These are closed subspaces of
$\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu })$
and
$ \mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
, respectively. Setting

there is a canonical open immersion

Set

Then
$\mathcal{M}_{{\rm PC}}^{n_0\textrm { -reg}}(\boldsymbol{\nu },\nabla _L)$
is a closed subspace of
$\mathcal{M}^{n_0\textrm { -reg}}_{{\rm PC}}(\boldsymbol{\nu })$
and it contains
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
as a Zariski open subspace.
Under the assumption that the rank
$r$
is not divisible by the characteristic of
$k$
, the proof of the smoothness of the moduli space given in [Reference InabaIna, Theorem 2.1] works because the assumption ensures that the Killing form on
${\rm sl}(r,k)$
remains nondegenerate. This is elaborated in the following proposition.
Proposition 5.5. Assume that the rank
$r$
is not divisible by the characteristic of
$k$
. Then the moduli space
$\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)$
is smooth over
$k$
, and so is its open subspace
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
.
Proof. We use the criterion of smoothness in [Reference GrothendieckGrot2, Proposition 17.14.2]. Let
$A$
be an Artinian local ring over
$k$
with the maximal ideal
$\mathfrak{m}$
, and let
$I$
be an ideal of
$A$
such that
$\mathfrak{m}I\,=\,0$
. Suppose that we are given a morphism
$\textrm { Spec} A/I\,\longrightarrow \,\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)$
that corresponds to a flat family
$(E,\,\nabla ,\,\boldsymbol{l})$
of parabolic connections on
$X\times \textrm { Spec} A/I$
over
$A/I$
. It suffices to construct a flat family
$(\widetilde {E},\,\widetilde {\nabla },\,\widetilde {\boldsymbol{l}})$
of
$\boldsymbol{\nu }$
-parabolic connections on
$X\times \textrm { Spec} A$
over
$\textrm { Spec} A$
that is a lift of
$(E,\,\nabla ,\,\boldsymbol{l})$
.
There is an isomorphism
$\varphi \,\colon \, \det E\,\xrightarrow {\,\,\sim \,\,\,}\, L\otimes A/I$
such that
$(\nabla _L\otimes A/I)\circ \varphi \,=\,(\varphi \otimes {\rm id})\circ {\textrm { Tr}}(\nabla )$
. Take an affine open covering
$\{U_{\alpha }\}$
of
$X$
satisfying the condition that there is an isomorphism

Set
$\overline {\phi _{\alpha }}\,\,:=\,\,\phi _{\alpha }\otimes A/\mathfrak{m}$
and
$\overline {\varphi }\,\,:=\,\,\varphi \otimes A/\mathfrak{m}$
. After replacing
$\phi _{\alpha }$
with
$(1+r^{-1}a)\phi _{\alpha }$
for some
$a\,\in \, I{\mathcal O}_{U_{\alpha }}$
, we may assume that

as maps from
$L\otimes A/I$
to
${\mathcal O}_{U_{\alpha }\times \textrm { Spec} A/I}$
. Set
$E_{\alpha }\,\,:=\,\,{\mathcal O}_{U_{\alpha }\times \textrm { Spec} A}^{\oplus r}$
and put

Choose a lift

of
$\phi _{\beta }\circ \phi _{\alpha }^{-1}$
. Replacing
$\theta _{\beta \alpha }$
with
$(1+r^{-1}b)\theta _{\beta \alpha }$
for some
$b\,\in \, I{\mathcal O}_{U_{\alpha \beta }\times \textrm { Spec} A}$
, we may assume that the following equality holds

as maps from
$\det (E_{\alpha })|_{U_{\alpha \beta }\times \textrm { Spec} A}$
to
$\det (E_{\beta })|_{U_{\alpha \beta }\times \textrm { Spec} A}$
. If
$x_i\,\in \, U_{\alpha }$
, then we take a quasi-parabolic structure
$l^{\alpha }_*$
on
$E_{\alpha }$
at
$x_i\times \textrm { Spec} A$
that is a lift of
$l^{(i)}_*$
. Take a relative connection

such that
$\nabla _{\alpha }\otimes A/I\,=\, \phi _{\alpha }\circ \nabla |_{U_{\alpha }\times \textrm { Spec} A/I}\circ \phi _{\alpha }^{-1}$
and
$\big ({\rm res}_{x_i\times \textrm { Spec} A}(\nabla _{\alpha })-\nu ^{(i)}_j\big ) (l^{\alpha }_j)\,\subset \, l^{\alpha }_{j+1}$
for all
$0\,\leqslant \, j\,\leqslant \, r-1$
. After replacing
$\nabla _{\alpha }$
with
$\nabla _{\alpha }+r^{-1}\eta \otimes {\rm id}_{E_{\alpha }}$
for some
$\eta \,\in \, I \, \Omega^1_{U_{\alpha }\times \textrm { Spec} A/\textrm { Spec} A}$
, we may assume that
$\varphi _{\alpha }{\textrm { Tr}}(\nabla _{\alpha })\varphi _{\alpha }^{-1}\,=\,\nabla _L\otimes {\rm id}_A$
. Put
$(\overline {E},\,\overline {\nabla },\,\overline {\boldsymbol{l}})\,\,:=\,\, (E,\,\nabla ,\,\boldsymbol{l})\otimes A/\mathfrak{m}$
and set

Then we get a cohomology class
$[\{\theta _{\gamma \alpha }^{-1}\theta _{\gamma \beta }\theta _{\beta \alpha }-{\rm id}\},\, \{ \theta _{\beta \alpha }^{-1}\circ \nabla _{\beta }\circ \theta _{\beta \alpha }-\nabla _{\alpha }\}] \,\in \, \mathbb{H}^2({\mathcal D}^{{\rm par}}_{\mathfrak{sl},\bullet }) \otimes I$
whose vanishing is equivalent to the existence of a lift
$(\widetilde {E},\,\widetilde {\nabla },\,\widetilde {\boldsymbol{l}}) \,\in \,{\mathcal M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)(A)$
of
$(E,\,\nabla ,\,\boldsymbol{l})$
. There is a commutative diagram with exact rows

induced by the Serre duality. Take any member

Since
$(\overline {E},\,\overline {\nabla },\,\overline {\boldsymbol{l}})$
is simple, we can write
$u\,=\,c\cdot {\rm id}_{\overline {E}}$
for some
$c\,\in \, k$
. By the definition of
${\mathcal D}^{{\rm par}}_{\mathfrak{sl},0}$
, we have
$0\,=\,{\textrm { Tr}}(u)\,=\,{\textrm { Tr}}(c\,{\rm id}_{\overline {E}})\,=\,rc$
. Since
$r^{-1}\,\in \,k^{\times }$
by the assumption, we have
$c\,=\,0$
. Thus,
$u\,=\,0$
, and we have
$\mathbb{H}^0({\mathcal D}^{{\rm par}}_{\mathfrak{sl},\bullet })\,=\,0$
. So the obstruction space
$\mathbb{H}^2({\mathcal D}^{{\rm par}}_{\mathfrak{sl},\bullet }) \,\cong \, \mathbb{H}^0({\mathcal D}^{{\rm par}}_{\mathfrak{sl},\bullet })^{\vee }$
vanishes, and there is a lift
$(\widetilde {E},\,\widetilde {\nabla },\,\widetilde {l})\,\in \, {\mathcal M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)(A)$
of
$(E,\nabla ,l)$
. This means that
${\mathcal M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)$
is smooth.
Using Proposition 5.5 and a similar calculation as in Lemma 2.6, we have the following proposition.
Proposition 5.6 [Reference InabaIna, Theorem 2.1, Propositions 5.1, 5.2 and 5.3]. The dimension of the moduli space
$\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)$
is
$2(r^2-1)(g-1)+nr(r-1)$
, which is same as the dimension of its open subspace
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
.
We can similarly define the Higgs bundles. As before,
$\boldsymbol{\alpha }$
is a parabolic weight. Take a tuple
$\boldsymbol{\mu }\,=\,(\mu ^{(i)}_j)^{1\leqslant i\leqslant n}_{0\leqslant j\leqslant r-1}\,\in \,k^{nr}$
satisfying the following condition:

We say that a tuple
$(E,\,\Phi , \,\boldsymbol{l}\,=\,\{l^{(i)}_*\}_{1\leqslant i\leqslant n})$
(equipped with a parabolic weight
$\boldsymbol{\alpha }$
) is an
$(\boldsymbol{x},\,\boldsymbol{\mu })$
-parabolic Higgs bundle if:
-
(1)
$E$ is an algebraic vector bundle on
$X$ of rank
$r$ and degree
$d$ ;
-
(2)
$\Phi \,\colon \, E\,\longrightarrow \, E\otimes K_{X}(D)$ is an
${\mathcal O}_X$ -linear homomorphism;
-
(3)
$l^{(i)}_*$ is a filtration
\begin{align*}E\big \vert _{x_i} \,=\, l_0^{(i)} \,\supset \, l_1^{(i)} \,\supset \,\cdots \,\supset \, l_r^{(i)}\,=\,0\end{align*}
$x_i$ such that
$\dim (l_j^{(i)}/l_{j+1}^{(i)})\,=\,1$ and
$({\rm res}_{x_i}(\Phi )-\mu ^{(i)}_j)(l^{(i)}_j) \,\subset \, l_{j+1}^{(i)}$ for all
$j\,=\,0,\,\cdots ,\,r-1$ .
An
$(\boldsymbol{x},\,\boldsymbol{\mu })$
-parabolic Higgs bundle
$(E,\,\Phi ,\,\boldsymbol{l})$
is said to be simple if every endomorphism

that commutes with
$\Phi$
and preserves
$\boldsymbol{l}$
is a constant scalar multiplication
$f\,=\,c\,{\rm Id}_E$
for some
$c\,\in \,k$
. Denote by
$\mathcal{M}_{{\rm Higgs}}(\boldsymbol{\mu })$
the moduli space of simple
$\boldsymbol{\mu }$
-parabolic Higgs bundles. Define
$\boldsymbol{\alpha }$
-stability for parabolic Higgs bundles analogous to Definition 4.10. If we replace
$n_0$
by a sufficiently large integer, we may assume that for every
$\boldsymbol{\alpha }$
-stable
$(\boldsymbol{x},\,\boldsymbol{\mu })$
-parabolic Higgs bundle
$(E,\,\Phi ,\,\boldsymbol{l})$
, the underlying vector bundle
$E$
is
$n_0$
-regular.
Fix a line bundle
$L$
on
$X$
together with a homomorphism
$\Phi _L\, \colon \, L\, \longrightarrow \, L\otimes K_X$
of
${\mathcal O}_X$
–modules such that
${\sf res}_{x_i}(\Phi _L)\,=\,\sum _{j=0}^{r-1}\mu ^{(i)}_j$
for any
$i$
. Set

The same calculations as in the proof of Propositions 5.5 and Proposition 5.6 yield the following proposition.
Proposition 5.7 (See [Reference Boden and YokogawaBoYo, § 2.1], [Reference YokogawaYo, Theorem 2.8]). Assume that
$r$
is not divisible by the characteristic of
$k$
. Then the moduli space
$ \mathcal{M}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
is smooth and
$\dim \mathcal{M}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L) \,=\,2(r^2-1)(g-1)+nr(r-1)$
. Furthermore, the open subspace
$\mathcal{M}^{\boldsymbol{\alpha }}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
of
$\mathcal{M}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
consisting of
$\boldsymbol{\alpha }$
-stable parabolic Higgs bundles is quasi-projective.
It is known that there is no non-constant global algebraic function on the moduli space of logarithmic connections with central residues on a compact Riemann surface of genus at least
$3$
[Reference Biswas and RaghavendraBiRa]. In the logarithmic case, the same statement was proved in [Reference ArinkinAr] in a very special case when
$g\,=\,0$
,
$r\,=\,2$
and
$n\,=\,4$
. In [Reference Biswas and RaghavendraBiRa], the Betti number of the moduli space of stable vector bundles assumed one of the key roles. A similar result is proved in [Reference SinghSin]. We will prove, in this section, a weaker result that the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\,\nabla _L)$
of
$(\boldsymbol{x},\,\boldsymbol{\nu })$
-parabolic connections is not affine for any genus, except for several special cases. We use a part of the ideas in [Reference Biswas and RaghavendraBiRa] and compare the transcendence degree of the ring of global algebraic functions on the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\,\nabla _L)$
of parabolic connections with that on the moduli space
$\mathcal{M}_{{\rm Higgs}}^{\boldsymbol{\alpha }}(\boldsymbol{0},\,0)$
of parabolic Higgs bundles. Our argument also works over the base field of positive characteristic, which is consistent with the existence of the Hitchin map on the moduli space of connections ([Reference Laszlo and PaulyLaPa], [Reference GroechenigGroe]).
5.2 Codimension estimation for non-simple underlying bundle
This subsection provides an improvement of the result of [Reference InabaIna, § 5]. Throughout this subsection,
$k$
is assumed to be an algebraically closed field of arbitrary characteristic.
Now, let
$X$
be a smooth projective irreducible curve over
$\textrm { Spec}\, k$
of genus is
$g$
, and let
$D\,=\,x_1+ \cdots +x_n$
be a reduced divisor on
$X$
. Fix a line bundle
$L$
of degree
$d$
on
$X$
. Consider the set

of isomorphism classes of quasi-parabolic bundles
$(E,\,\boldsymbol{l})$
on
$(X,\,D)$
such that:
-
(i)
$E$ is an algebraic vector bundle on
$X$ of rank
$r$ with
$\det E\,\cong \,L$ ;
-
(ii)
$\boldsymbol{l}$ is a quasi-parabolic structure consisting of filtrations
\begin{align*}E|_{x_i}\,=\,l^{(i)}_0\,\supsetneq \, l^{(i)}_1\,\supsetneq \,\cdots \,\supsetneq \, l^{(i)}_{r-1}\,\supsetneq \, l^{(i)}_r\,=\,0\end{align*}
$x_i\,\in \, D$ ;
-
(iii)
$E_0$ is
$n_0$ -regular.
By virtue of Lemma 5.4, there is a scheme
$Z$
of finite type over
$\textrm {Spec}\, k$
and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$X\times Z$
over
$Z$
such that every member
$(E,\,\boldsymbol{l})\,\in \, {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)$
is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{p\}}$
for some point
$p\,\in \, S$
. Consider the subset

of
$|{\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)|$
consisting of simple quasi-parabolic bundles, where
$\textrm { End}(E,\,\boldsymbol{l})$
is defined by

Definition 5.8. Let,
$X$
be a smooth projective curve over
$k$
. For a vector bundle
$E$
on
$X$
, we set
$\mu (E)\,\,:=\,\,\deg (E)/\textrm { rank}(E)$
, and call it the slope of
$E$
.
We will construct a parameter space of
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
whose dimension is at most
$(r^2-1)(g-1)+nr(r-1)/2-2$
. For its proof, we need the following lemma.
Lemma 5.9. Let
$X$
be a smooth projective curve over
$k$
of genus
$g\,\geqslant \, 2$
, and let
$E$
and
$F$
be semistable vector bundles on
$X$
satisfying the condition
$\mu (E)\,\gt \,\mu (F)$
. Then the following inequality holds:

Proof. By the Serre duality, we have
$\dim \textrm { Ext}^1_X(F,\,E)\,=\, \dim \textrm { Hom}(E,\,F\otimes K_X)$
. Choose a general point
$x\,\in \, X$
.
First, consider the case where
$\deg (E^{\vee }\otimes F\otimes {\mathcal O}_X(x))\,\gt \,0$
. In this case, we have
$\textrm { Hom}(F,\, E\otimes {\mathcal O}_X(-x))\,=\,0$
. Note that we have
$\deg (F^{\vee }\otimes E\otimes {\mathcal O}_X(-x))\,\gt \,-\textrm { rank}(E)\textrm { rank}(F)$
, because
$\mu (E)\,\gt \,\mu (F)$
. By the Riemann–Roch theorem, we have

Second, consider the case where
$\deg (E^{\vee }\otimes F\otimes {\mathcal O}_X(x))\,\lt \,0$
. Take general points
$x_1,\,\cdots ,\,x_{2g-3}$
of
$X$
. Then we get exact sequences

for
$i\,=\,1,\,\cdots ,\,2g-3$
. Note that the condition
$\deg (E^{\vee }\otimes F(x))\,\lt \,0$
implies that
$\mu (E)\,\gt \,\mu (F\otimes K_X(-x_1-\cdots -x_{2g-3}))$
, which yields

because
$E$
and
$F$
are semistable. So we have

Consider the remaining case where
$\deg ( E^{\vee }\otimes F(t))\,=\,0$
. Take general points
$x_1,\,\cdots ,\,x_{2g-3}\,\in \, X$
. Then we have
$\mu (E)\,=\,\mu (F\otimes K_X(-x_1-\cdots -x_{2g-3}))$
. We can write
${\rm gr}(E)\,=\,\bigoplus _i E_i$
and
${\rm gr}(F)\,=\,\bigoplus _jF_j$
for stable vector bundles
$E_i$
and
$F_j$
such that
$\mu (E_i)\,=\,\mu (E)\,=\,\mu (F)\,=\,\mu (F_j)$
for any
$i,\,j$
. If we take
$x_1,\,\cdots ,\,x_{2g-3}$
sufficiently generic, then we may assume
$E_i\,\not \cong \, F_j\otimes K_X(-x_1-\cdots -x_{2g-3})$
for any
$i,\,j$
. Then we have
$\textrm { Hom}(E,\,F\otimes K_X(-x_1-\cdots -x_{2g-3}))\,=\,0$
. By the same argument as before, we have the inequality
$\dim \textrm { Ext}^1_X(E,F)\,\leqslant \, \textrm { rank}(E)\textrm { rank}(F)(2g-3)$
.
Proposition 5.10. Let
$X$
be a smooth projective curve over
$k$
of genus
$g\,\geqslant \, 2$
, and let
$L$
be a line bundle of degree
$d$
on
$X$
. Assume that the integers
$r$
and
$n$
satisfy the conditions
$r\,\geqslant \, 2$
and
$n\,\geqslant \, 1$
. Then there exists a scheme
$Z$
of finite type over
$\textrm { Spec}\, k$
and a flat family
$(\mathcal{E},\,\ell )$
of quasi-parabolic bundles on
$X\times Z$
over
$Z$
such that:
-
(a)
$\dim Z \,\,\leqslant \,\, (r^2-1)(g-1)+r(r-1)n/2-2$ ;
-
(b)
$\dim \textrm {End}\left ((\mathcal{E},\ell )\big \vert _{X\times \{z\}}\right )\,\,\geqslant \,\, 2$ for any
$z\,\in \, Z$ ;
and each member of the complement
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
is isomorphic to
$(\mathcal{E},\,\ell )|_{X\times \{z\}}$
for some point
$z\,\in \, Z$
.
Proof. Take a quasi-parabolic bundle
$(E,\,\boldsymbol{l})$
on
$(X,\,D)$
with
$\det E\, \cong \, L$
. Choose a point
$x_i\,\in \, D$
and
$l^{(i)}_j\,\subset \, E|_{x_i}$
. Then
$E'\,\,:=\,\,\ker (E\,\rightarrow \, E|_{x_i}/l^{(i)}_j)$
has a canonical quasi-parabolic structure
$\boldsymbol{l'}$
induced by
$\boldsymbol{l}$
. The correspondence
$(E,\,\boldsymbol{l})\,\longmapsto \, (E',\,\boldsymbol{l'})$
gives a bijection between the set of isomorphism classes of quasi-parabolic bundles; it is called an elementary transformation or a Hecke modification. After applying a finite number of elementary transformations, it may be assumed that
$r$
and
$d$
are coprime.
Take a member
$(E,\,\boldsymbol{l})\,\in \, |{\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)| \setminus |{\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ }|$
. Since
$\dim \textrm { End}(E,\,\boldsymbol{l})\,\gt \,1$
by the definition, we have
$\dim \textrm { End}(E)\,\gt \,1$
and
$E$
is not a semistable vector bundle. Let

be the Harder–Narasimhan filtration of
$E$
; note that
$m\,\geqslant \, 2$
because
$E$
is not semistable. Set
$\overline {E}_1\,\,:=\,\,E_1$
,
$\overline {E}_s\,\,:=\,\,E_s/E_{s-1}$
for
$s\,\geqslant \, 2$
and
$r_s\,\,:=\,\,\textrm { rank}\,\overline {E}_s$
. By the definition of a Harder–Narasimhan filtration, each
$\overline {E}_s$
is semistable for
$1\,\leqslant \, s\,\leqslant \, m$
and the inequalities
$\mu (\overline {E}_1)\,\gt \,\mu (\overline {E}_2)\,\gt \,\cdots \,\gt \,\mu (\overline {E}_m)$
hold. Each semistable vector bundle
$\overline {E}_s$
has a Jordan–Hölder filtration

with
$\gamma _s\,\geqslant \,1$
. Set
$\overline {E}^{(1)}_s\,\,:=\,\,E^{(1)}_s$
,
$\overline {E}^{(i)}_s\,\,:=\, \,E^{(i)}_s/E^{(i-1)}_s$
for
$2\,\leqslant \, i\,\leqslant \,\gamma _s$
,
$r^{(i)}_s\,\,:=\,\,\textrm { rank}\overline {E}^{(i)}_s$
and
$d^{(i)}_s\,\,:=\,\,\deg \overline {E}^{(i)}_s$
. Then, each
$\overline {E}^{(i)}_s$
is a stable bundle on
$X$
and

holds.
Let us consider the converse. If stable bundles
$\{\overline {E}^{(i)}_s\}$
are given,
$\{\overline {E}_s\}$
are given by successive extensions

with
$E^{(\gamma _s)}_s\,=\,\overline {E}_s$
. If
$\{\overline {E}_s\}$
are given, then
$E$
is given by successive extensions

with
$E_m\,=\,E$
. By its definition,
$\boldsymbol{l}$
is given by a filtration
$E\big \vert _{x_i}\,=\,l^{(i)}_0\,\supset \, l^{(i)}_1\,\supset \,\cdots \,\supset \, l^{(i)}_{r-1}\,\supset \, l^{(i)}_r\,=\,0$
for each
$1\,\leqslant \, i\,\leqslant \, n$
.
We will construct a parameter space of the above data, but we avoid the case of
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
and postpone its proof until later. This is because this case needs an extra argument.
Excluding the case where
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
, we first construct the parameter space of the above data with the further restricted conditions:
-
(a)
$\overline {E}^{(i)}_s\,\not \cong \, \overline {E}^{(j)}_s$ for
$i\,\neq \, j$ ;
Set

where
${\mathcal N}^e (r^{(i)}_s, d^{(i)}_s)^{\circ }$
is the moduli space of stable vector bundles on
$X$
of rank
$r^{(i)}_s$
and of degree
$d^{(i)}_s$
. Since
$\dim {\mathcal N}^e (r^{(i)}_s, d^{(i)}_s)^{\circ } \,=\,(r^{(i)}_s)^2(g-1)+1$
, we have
$\dim N\,=\,\sum _{s=1}^m \sum _{i=1}^{\gamma _s} \big ( (r^{(i)}_s)^2(g-1)+1\big ) -g$
. Take a quasi-finite covering
$N'\,\longrightarrow \, N$
whose image consists of those points such that
$\overline {E}^{(i)}_s\,\not \cong \,\overline {E}^{(i')}_{s'}$
for
$(i,\,s)\,\neq \,(i',\,s')$
. We may take a universal family of vector bundles
$\{\overline {\mathcal E}^{(i)}_s\}^{1\leqslant i\leqslant \gamma _s}_{1\leqslant s\leqslant m}$
on
$X\times N'$
over
$N'$
such that
$\bigotimes _{s=1}^m\bigotimes _{i=1}^{\gamma _s} \det \big ( \overline {\mathcal E}^{(i)}_s \big ) \,\cong \, L\otimes {\mathcal L'}$
for some line bundle
$\mathcal L'$
on
$N'$
. After replacing
$N'$
with a disjoint union of locally closed subsets, we may further assume that:
-
(1) the relative
$\textrm { Ext}$ -sheaves
$\textrm { Ext}^p_{X\times N'/N'} \big ( \overline {\mathcal E}^{(i)}_s ,\, \overline {\mathcal E}^{(j)}_s \big )$ are locally free sheaves on
$N'$ for
$1\,\leqslant \, s\,\leqslant \, m$ ,
$p\,=\,0,\,1$ and any
$j\,\lt \,i$ ;
-
(2) the canonical maps
$\textrm { Ext}^p_{X\times N'/N'} \big ( \overline {\mathcal E}^{(i)}_s ,\, \overline {\mathcal E}^{(j)}_s \big )\big |_z \,\longrightarrow \, \textrm { Ext}^p_{X\times \{z\}}\big ( \overline {\mathcal E}^{(i)}_s|_{X\times \{z\}} , \, \overline {\mathcal E}^{(j)}_s|_{X\times \{z\}} \big )$ are isomorphisms for all points
$z\in N'$ .
Set

for every
$1\,\leqslant \, s\,\leqslant \, m$
, where
${\rm Sym}\left (\textrm { Ext}^1_{X\times N'/N'} \big ( \overline {\mathcal E}^{(2)}_s ,\, \overline {\mathcal E}^{(1)}_s \big )^{\vee }\right )$
is the symmetric algebra of
$\textrm { Ext}^1_{X\times N'/N'} \big ( \overline {\mathcal E}^{(2)}_s ,\, \overline {\mathcal E}^{(1)}_s \big )^{\vee }$
over
${\mathcal O}_{N'}$
. Then there is a universal extension

on
$X\times P^{(2)}_s$
. Once
$P^{(2)}_s,\ldots ,P^{(i)}_s$
and
${\mathcal E}^{(2)}_s,\,\ldots ,\,{\mathcal E}^{(i)}_s$
are defined, we set

There is a universal extension

on
$X\times P^{(i+1)}_s$
. Set
$P_s\,\,:=\,\,P^{(\gamma _s)}_s$
for
$1\,\leqslant \, s\,\leqslant \, m$
,
$P\,\,:=\,\, P_1\times _{N'}\times \cdots \times _{N'} P_m$
and
$\overline {\mathcal E}_s\,\,:=\,\,{\mathcal E}^{(\gamma _s)}_s\otimes _{O_{P_s}}{\mathcal O}_P$
. After replacing
$P$
with a disjoint union of locally closed subsets, we may assume that:
the relative
$\textrm { Ext}$ -sheaves
$\textrm { Ext}^p_{X\times P/P} \big ( \overline {\mathcal E}_s,\,\overline {\mathcal E}_{s'}\big )$ are all locally free sheaves on
$P$ for
$p\,=\,0,\,1$ and
$s'\,\lt \,s$ ;
the canonical homomorphisms
$\textrm { Ext}^p_{X\times P/P} \big ( \overline {\mathcal E}_s,\,\overline {\mathcal E}_{s'}\big )\big |_z \,\longrightarrow \,\textrm { Ext}^p_{X\times P/P} \big ( \overline {\mathcal E}_s\big |_{X\times \{z\}},\, \overline {\mathcal E}_{s'}\big |_{X\times \{z\}}\big )$ are isomorphisms for all points
$z\,\in \, P$ .
Set

Then there is a universal extension
$0\,\longrightarrow \, \overline {\mathcal E}_1 \,\longrightarrow \, {\mathcal E}_2 \,\longrightarrow \, \overline {\mathcal E}_2 \otimes {\mathcal O}_{Q_2}(1) \, \longrightarrow \, 0$
on
$X\times Q_2$
. Once
$Q_2,\,\cdots ,\, Q_s$
and
${\mathcal E}_2,\,\cdots ,\, {\mathcal E}_s$
are defined, set

Then there are universal extensions
$0\,\longrightarrow \, {\mathcal E}_s \,\longrightarrow \,{\mathcal E}_{s+1} \, \longrightarrow \, \overline {\mathcal E}_{s+1} \otimes {\mathcal O}_{Q_{s+1}}(1) \, \longrightarrow \, 0$
for
$1\,\leqslant \, s\,\leqslant \, m-1$
. Set

Let
$Y_Q$
be the flag bundle over
$Q$
whose fiber over any
$q\,\in \, Q$
is the parameter space of the filtrations

Then there is a universal family of filtrations
$\ell$
so that
$({\mathcal E},\,\ell )$
becomes a flat family of quasi-parabolic bundles on
$X\times Y_Q$
over
$Y_Q$
. Let
$Z_Q$
be the reduced closed subscheme of
$Y_Q$
consisting of the points
$y$
such that
$\dim \textrm { End}\left ( ({\mathcal E} ,\,\ell ) |_{X\times y}\right )\,\geqslant \, 2$
.
We want to prove that the dimension of
$Z_Q$
is at most
$(r^2-1)(g-1)+nr(r-1)/2-2$
. Recall that
$\dim N'\,=\,-g+\sum _{s=1}^m \sum _{i=1}^{\gamma _s} \big ( (r^{(i)}_s)^2(g-1)+1\big )$
. Since there are exact sequences

for
$1\,\leqslant \, j\,\lt \,i$
, the dimension of
$\mathbb{P}_* (\textrm {Ext}^1(\overline {E}^{(i)}_s ,\, E^{(i-1)}_s))$
is at most
$ -1+\sum _{j\lt i} \dim \textrm { Ext}^1(\overline {E}^{(i)}_s,\,\overline {E}^{(j)}_s)$
. Furthermore, the Riemann–Roch theorem implies that
$\dim \textrm { Ext}^1(\overline {E}^{(i)}_s,\,\overline {E}^{(j)}_s)\,=\, r^{(i)}_s r^{(j)}_s(g-1)$
, because
$\overline {E}^{(i)}_s$
and
$\overline {E}^{(j)}_s$
are stable vector bundles of the same slope and
$E^{(i)}_s\,\not \cong \, E^{(j)}_s$
. Therefore, the dimension of the fibers of
$P^{(i+1)}_s\,=\, \mathbb{P}_*\textrm { Ext}^1_{X\times _{N'} P^{(i)}_s/P^{(i)}_s} \big ( \overline {\mathcal E}^{(i+1)}_s ,\, {\mathcal E}^{(i)}_s \big )$
over
$P^{(i)}_s$
is at most
$-1+\sum _{j=1}^{i-1} r^{(i)}_s r^{(j)}_s (g-1)$
, which implies that the dimension of the fibers of
$P_s\,=\,P^{(\gamma _s)}_s$
over
$N'$
is at most

Since the extensions in (5.4) do not split, we can see, by an argument similar to the above, that the dimension of the fibers of
$Q$
over
$P_1\times _{N'}\times \cdots \times _{N'} P_m$
is at most

By Lemma 5.9, we have the inequality

Using the equality
$r_s\,=\,r^{(1)}_s+\cdots +r^{(\gamma _s)}_s$
we get the following:

Taking into account the condition
$m\,\geqslant \, 2$
, we have
$\dim Q\,\leqslant \, (r^2-1)(g-1)-2$
, because we avoid the case where
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
. Since the dimension of the fibers of
$Y_Q$
over
$Q$
is
$nr(r-1)/2$
, and
$Z_Q$
is contained in
$Y_Q$
, we have
$\dim Z_Q\,\leqslant \, \dim Q+nr(r-1)/2\,\leqslant \, (r^2-1)(g-1)+nr(r-1)/2-2$
.
Consider the case where one of the extensions (5.3) and (5.4) splits, while again excluding the case of
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
. In this case, we replace
$P^{(i+1)}_s\,=\,\mathbb{P}_*\textrm { Ext}^1_{X\times P^{(i)}_s/P^{(i)}_s} (\overline {\mathcal E}^{(i+1)}_s,\, {\mathcal E}^{(i)}_s )$
with
$P^{(i+1)}_s\,=\,P^{(i)}_s$
or replace
$Q_{s+1}\,=\,\mathbb{P}_*\textrm { Ext}^1_{X\times Q_s/Q_s}(\overline {\mathcal E}_{s+1},\,{\mathcal E}_s)$
with
$Q_{s+1}\,=\,Q_s$
(depending on which extension splits). So, the replacement of the estimation of (5.6) does not affect the calculation in (5.7). Thus, the inequality
$\dim Q\,\leqslant \, (r^2-1)(g-1)-2$
still holds, and we get that
$\dim Z_Q\,\leqslant \, (r^2-1)(g-1)+nr(r-1)/2-2$
.
Next, consider the case where
$\overline {E}^{(i)}_s\,\cong \, \overline {E}^{(j)}_s$
for some
$i\,\neq \, j$
. In the calculation of (5.5), we should replace
$\dim \textrm { Ext}^1_X(\overline {E}^{(i)}_s ,\, \overline {E}^{(j)}_s)\,=\,r^{(i)}_s r^{(j)}_s(g-1)$
with
$\dim \textrm { Ext}^1_X(\overline {E}^{(i)}_s , \,\overline {E}^{(j)}_s) \,=\,r^{(i)}_s r^{(j)}_s(g-1)+1$
in the term related to the above pair
$(i,\, j)$
. However, we replace the condition
$\overline {E}^{(i)}_s\,\not \cong \, \overline {E}^{(j)}_s$
with the condition
$\overline {E}^{(i)}_s\,\cong \, \overline {E}^{(j)}_s$
in the definition of
$N'$
. So, the calculation of (5.7) is still valid and we get the inequality
$\dim Z_Q\,\leqslant \, (r^2-1)(g-1)+nr(r-1)-2$
.
Consider now the remaining case where
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
. In this case,
$Q$
is a parameter space of the extensions

where
$E_1,\, E_2$
are stable vector bundles such that
$\mu (E_1)\,=\,\mu _1\,\gt \,\mu _2\,=\,\mu (E_2)$
. In the calculation of (5.7), we have
$\dim Q\,\leqslant \, (r^2-1)(g-1)-1$
in this case. So, we have
$\dim Z_Q\,\leqslant \, (r^2-1)(g-1)+nr(r-1)/2-1$
. Note that an automorphism
$\textbf {g}$
of
$E$
makes the diagram

commutative and we have
$\textbf {g}_1\,=\, c_1{\rm id}_{E_1}$
and
$\textbf {g}_2\,=\,c_2{\rm id}_{E_2}$
for some
$c_1,\, c_2\,\in \, k^{\times }$
.
Consider the case where
$\textrm { Hom}(E_2,\,E_1)\,=\,0$
for generic members
$(E_1,\, E_2)$
of
$N'$
. In that case, the dimension of the locus
$\textrm { Hom}(E_2,\,E_1)\,\neq \, 0$
in
$Z_Q$
is at most
$(r^2-1)(g-1)+nr(r-1)-2$
. For a general member
$(E_1,\, E_2)$
of
$N'$
, the automorphisms
$\textbf {g}$
of
$E$
are given by
$(c_1,\, c_2)\,\in \, k^{\times }\times k^{\times }$
satisfying the conditions
$\textbf {g}_1\,=\,c_1{\rm id}_{E_1}$
and
$\textbf {g}_2\,=\, c_2{\rm id}_{E_2}$
. Let
$v\,=\, v_1e_1+\cdots +v_re_r$
be a generator of
$l^{(1)}_{r-1}$
with respect to a chosen basis
$e_1,\,\ldots ,\, e_r$
of
$E|_{x_1}$
such that
$e_1,\,\ldots ,\, e_{r_1}$
generates
$E_1|_{x_1}$
. Applying the automorphisms of
$E$
of the above form, we can normalize
$l^{(1)}_{r-1}$
so that a generator
$v\,=\,v_1e_1+\cdots +v_re_r$
of
$l^{(1)}_{r-1}$
satisfies
$v_i\,=\,v_{r_1+j}$
or
$v_iv_{r_1+j}\,=\,0$
for some
$i,\,j$
with
$1\,\leqslant \, i\,\leqslant \, r_1$
and
$1\,\leqslant \,j\,\leqslant \, r_2$
. The reduced subscheme of
$Z_Q$
defined by this condition is of dimension at most
$(r^2-1)(g-1)+nr(r-1)-2$
.
Consider the case where
$\textrm { Hom}(E_2,\,E_1)\,\neq \, 0$
for generic members
$(E_1,\, E_2)$
of
$N'$
. Then there are automorphisms of
$E$
of the form
$c\cdot {\rm id}_E+h$
with
$0\,\neq \, h\,\in \,\textrm { Hom}(E_2,\, E_1)$
. After replacing
$(E_1,\,E_2)$
with
$(E_1\otimes {\mathcal L}^{\otimes r_2},\, E_2\otimes {\mathcal L}^{\otimes -r_1})$
, for a generic member
${\mathcal L}\,\in \, \textrm { Pic}^0_X$
, we may assume that
$h|_{x_1}\,\neq \, 0$
, because the locus of
$N'$
satisfying
$\textrm { Hom}(E_2,\, E_1(-x_1))\,=\,\textrm { Hom}(E_2,\,E_1)$
is of dimension less than
$\dim N'$
. After applying the automorphisms of
$E$
, we may normalize a generator
$v\,=\,v_1e_1+\cdots +v_re_r$
of
$l^{(1)}_{r-1}$
such that
$v_i\,=\,0$
for some
$1\,\leqslant \, i\,\leqslant \, r_1$
or
$l^{(1)}_{r-1}\,\subset \,E_1|_{x_1}$
. The locus of
$Z_Q$
defined by this condition is of dimension at most
$(r^2-1)(g-1)+nr(r-1)-2$
.
The disjoint union of all of the
$Z_Q$
in the above arguments and the flat family of quasi-parabolic bundles given by
$({\mathcal E},\,\ell )$
satisfy the assertion of the proposition.
Proposition 5.11. Let
$X$
be an elliptic curve over
$k$
, and let
$L$
be a line bundle of degree
$d$
on
$X$
. Assume that one of the following holds:
$n\,\geqslant \, 3$ and
$r\,\geqslant \, 2$ ;
$n\,=\,2$ and
$r\,\geqslant \, 3$ .
Then there exists a scheme
$Z$
of finite type over
$k$
and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$X\times Z$
over
$Z$
such that:
-
(a)
$\dim Z \, \leqslant \, r(r-1)n/2-2$ ;
-
(b)
$\dim \textrm { End}((\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{z\}})\,\geqslant \, 2$ for any
$z\,\in \, Z$ ;
and each member of the complement
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{z\}}$
for some point
$z\,\in \, Z$
.
Proof. As in the proof of Proposition 5.10, we may assume that
$r$
and
$d$
are coprime. Take a member
$(E,\,\boldsymbol{l})\,\in \, \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
. Since
$\dim \textrm { End}(E,\,\boldsymbol{l})\,\geqslant \, 2$
, it follows that
$\dim \textrm { End}(E)\,\geqslant \, 2$
. As
$r$
and
$d$
are coprime, the vector bundle
$E$
is not semistable. Let

be the Harder–Narasimhan filtration of
$E$
; note that
$m\,\geqslant \, 2$
because
$E$
is not semistable. Setting
$\overline {E}_1\,=\, E_1$
and
$\overline {E}_s\,\,:=\,\, E_s/E_{s-1}$
for
$2\,\leqslant \, s \,\leqslant \, m$
, the slopes
$\mu _t\,\,:=\,\,\mu (\overline {E}_t)$
satisfy the inequalities

and we get extensions

Note that we have
$\textrm { Ext}^1(\overline {E}_t,\, \overline {E}_s)\,\cong \, \textrm { Hom}(\overline {E}_s ,\, \overline {E}_t)^{\vee }\,=\,0$
for
$s\,\lt \,t$
, because
$\mu (\overline {E}_t)\,\lt \,\mu (\overline {E}_s)$
and
$\overline {E}_s,\, \overline {E}_t$
are semistable. It follows that
$\textrm { Ext}^1(\overline {E}_{s+1},\,E_s)\,=\, 0$
. So the extension (5.9) must split, and we have a decomposition

Let
$\{\overline {F}^{(i)}_s\}_{i=1,\ldots ,\gamma _s}$
be the set of stable bundles arising in the direct summands of
${\rm gr}(\overline {E}_s)$
. Fix an index
$i\, \in \, \{1,\ldots ,\, \gamma _s\}$
. Let
$G_i\,\subset \,\overline {E}_s$
be a maximal subbundle satisfying the condition
$\textrm {Hom}(G_i,\, \overline {F}^{(i)}_s)\,=\,0$
. Then we have
$\textrm { Hom}(\overline {F}^{(j)}_s,\,\overline {E}_s/G_i)\,=\,0$
for any
$j\,\neq \, i$
, because otherwise the pullback of
$\overline {F}^{(j)}_s\,\subset \, \overline {E}_s/G_i$
by the surjection
$\overline {E}_s\,\longrightarrow \, \overline {E}_s/G_i$
contradicts the maximality of
$G_i$
.
Taking account that
$\overline {E}_s$
is semistable, we can see that
$\overline {E}_s/G_i$
is semistable of slope
$\mu (\overline {E}_s)$
and
${\rm gr}\big (\overline {E}_s/G_i\big )\,\cong \, \big (\overline {F}^{(i)}_s\big )^{\oplus u}$
for some positive integer
$u$
. So, we have

and the extension
$0\,\longrightarrow \, G_i \,\longrightarrow \, \overline {E}_s \,\longrightarrow \,\overline {E}_s/G_i \,\longrightarrow \, 0$
must split. Applying the same argument to
$G_i$
, we finally get a decomposition

where
$F^{(i)}_s$
is a semistable bundle satisfying the condition
${\rm gr}\big (F^{(i)}_s\big ) \,\cong \, \big (\overline {F}^{(i)}_s\big )^{\oplus u}$
for a positive integer
$u$
. Note that
$\mu (F^{(i)}_s)\,=\,\mu _s$
for any
$i$
and these satisfy the inequalities in (5.8). We may further assume that
$\overline {F}^{(i)}_s\,\not \cong \, \overline {F}^{(j)}_s$
for
$i\,\neq \, j$
. Note that we have

The moduli space of stable bundles parameterizing
$\overline {F}^{(i)}_s$
is isomorphic to
$\textrm { Pic}^0_X\,\cong \, X$
for all
$i,\,s$
. Since we have
$\dim \textrm { Ext}^1(\overline {F}^{(i)}_s,\,\overline {F}^{(i)}_s)\,=\,1$
for a stable vector bundle
$\overline {F}^{(i)}_s$
, a successive non-split extension of
$\overline {F}^{(i)}_s$
is unique up to an isomorphism. So, once
$\overline {F}^{(i)}_s$
is given, the extensions
$F^{(i)}_s$
of
$\overline {F}^{(i)}_s$
are parameterized by a finite set. Taking into account the relation (5.10), the underlying vector bundles
$E$
of
$(E,\,\boldsymbol{l})$
can be parameterized by a scheme
$W$
of finite type over
$\textrm { Spec}\, k$
whose dimension is
$-1+\sum _{s=1}^m \gamma _s$
.
Let

be the flag bundle parameterizing the quasi-parabolic structures on the vector bundles
$E$
corresponding to the points of
$W$
. There is a universal family of quasi-parabolic bundles
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
on
$X\times Y$
over
$Y$
. Since each fiber of
$Y$
over
$W$
is of dimension
$nr(r-1)/2$
, we have

Write
$(E,\,\boldsymbol{l})\,\,:=\,\,(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times y}$
for each point
$y\,\in \, Y$
.
Case A. Consider the case where the number of components in the decomposition
$E\, =\, \bigoplus _{s,i}F^{(i)}_s$
is at least three. Choose a basis
$e^{(i)}_{x,s,1},\,\cdots ,\, e^{(i)}_{x,s,r_{i,s}}$
of
$F^{(i)}_s|_x$
at each point
$x\,\in \,D$
for
$1\,\leqslant \, s\,\leqslant \, m$
and
$1\,\leqslant \, i\,\leqslant \,\gamma _s$
. Let

be a generator of
$l^{(2)}_{r-1}$
, and let

be a representative of a generator of
$l^{(2)}_{r-2}/l^{(2)}_{r-1}$
. The group
${\textrm { Aut}} E$
of automorphisms of
$E$
consists of the invertible elements of the ring of endomorphisms of
$E$
:

By the assumption, we can choose
$F^{(i)}_s,\,F^{(i')}_{s'},\,F^{(j)}_t$
and
$F^{(j')}_{t'}$
whose indices satisfy
$s'\,\lt \,s$
,
$t'\,\lt \,t$
and
$((s,\,i),\,(s',\,i'))\,\neq \,((t,\,j),\,(t',\,j'))$
. So
${\textrm { Aut}} E$
contains the three types of automorphisms:

Note that the restriction maps


are not zero for generic choices of
$F^{(i)}_s,\,F^{(i')}_{s'},\,F^{(j)}_t$
and
$F^{(j')}_{t'}$
.
If
$F^{(i)}_s\,\neq \, F^{(j)}_t$
and
$v^{(i)}_{x_2,s,p}\,\neq \, 0$
for some
$p$
, then we may normalize a representative of a generator of
$l^{(2)}_{r-2}/l^{(2)}_{r-1}$
such that
$w^{(i)}_{x_2,s,p}\,=\,0$
. Applying the actions of
${\rm id}_E+\textrm { Hom}(F^{(i)}_s,\,F^{(i')}_{s'})$
and
${\rm id}_E+\textrm { Hom}(F^{(j)}_t,\,F^{(j')}_{t'})$
, we may ensure that
$v^{(i')}_{x_2,s',p}\,=\,0$
for some
$p$
and
$w^{(j')}_{x_2,t',q} w^{(j)}_{x_2,t,q'}\,=\,0$
for some
$q,\, q'$
. The Zariski closed subset
$Y'$
defined by this condition is of dimension
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
.
Assume that
$F^{(i)}_s\,\neq \, F^{(j)}_t$
and
$v^{(i)}_{x_2,s,p}\,=\,0$
for all
$p$
. If, in addition, the condition
$v^{(i)}_{x_2,s',p'}\,=\,0$
holds for all
$p'$
, then such a locus is of dimension at most
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
. So, assume that
$v^{(i)}_{x_2,s',p'}\,\neq \, 0$
for some
$p'$
. Then we can normalize a representative of a generator of
$l^{(2)}_{r-2}/l^{(2)}_{r-1}$
such that
$w^{(i)}_{x_2,s',p'}\,=\,0$
. Applying the action of
${\rm id}_E+\textrm { Hom}(F^{(j)}_t,\,F^{(j')}_{t'})$
, we may have
$w^{(j')}_{x_2,t',q} w^{(j)}_{x_2,t,q'}\,=\,0$
for some
$q,\,q'$
. The Zariski closed subset of
$Y'$
defined by the condition
$v^{(i)}_{x_2,s,p}\,=\,0$
for all
$p$
and
$w^{(j')}_{x_2,t',q} w^{(j)}_{x_2,t,q'}\,=\,0$
for some
$q,\, q'$
is of dimension at most
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
.
Assume that
$F^{(i)}_s\,=\,F^{(j)}_t$
. Then we have
$F^{(i')}_{s'}\,\neq \, F^{(j')}_{t'}$
by the choices of

If
$v^{(i)}_{x_2,s,p}\,\neq \, 0$
for some
$p$
, then applying automorphisms in
${\rm id}_E+\textrm { Hom}(F^{(i)}_s,\,F^{(i')}_{s'})$
and
${\rm id}_E+\textrm { Hom}(F^{(j)}_t,\,F^{(j')}_{t'})$
, we may ensure that
$v^{(i')}_{x_2,s',p'}\,=\,v^{(i)}_{x_2,t',q'}\,=\,0$
for some
$p',\,q'$
. The Zariski closed subset of
$Y$
defined by this condition is of dimension at most
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
. Assume that
$v^{(i)}_{x_2,s,p}\,=\,0$
for all
$p$
, while still assuming
$F^{(i)}_s\,=\,F^{(j)}_t$
. If, in addition, we have
$v^{(i')}_{x_2,s',p'}\,=\,0$
for all
$p'$
, then such a locus in
$Y$
is of dimension at most
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
. So, assume that
$v^{(i')}_{x_2,s',p'}\,\neq \, 0$
for some
$p'$
. Then we may normalize a representative of a generator of
$l^{(2)}_{r-2}/l^{(2)}_{r-1}$
so that the condition
$w^{(i')}_{x_2,s',p'}\,=\,0$
holds. Applying an automorphism in
${\rm id}_E+\textrm { Hom}(F^{(j)}_t,\,F^{(j')}_{t'})$
, we may have
$w^{(j')}_{x_2,t',q'} w^{(j)}_{x_2,t,q} \,=\,0$
for some
$q,\,q'$
. The locus of
$Y$
defined by
$v^{(i')}_{x_2,s',p'}\,=\, 0$
for all
$p'$
and
$w^{(j')}_{x_2,t',q'} w^{(j)}_{x_2,t,q} \,=\, 0$
for some
$q,\, q'$
is of dimension at most
$\dim Y-2\,=\,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
.
Therefore, in all cases we can get a disjoint union
$Y'$
of locally closed subsets of
$Y$
and a flat family of quasi-parabolic bundles
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
on
$X\times Y'$
over
$Y'$
, such that
$\dim Y'\,\leqslant \,\sum _{s=1}^m\gamma _s+nr(r-1)/2-3$
and every member of
$\left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm par}}(L)^{\circ } \right |$
can be transformed by the actions of
${\rm id}_E+\textrm { Hom}(F^{(i)}_s,\,F^{(i')}_{s'})$
and
${\rm id}_E+\textrm { Hom}(F^{(j)}_t,\,F^{(j')}_{t'})$
to a quasi-parabolic bundle
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times y}$
for some
$y\,\in \, Y'$
.
Using the action of the group
$\prod _{s,i} k^{\times } {\rm id}_{F^{(i)}_s}$
on a generator

of
$l^{(1)}_{r-1}$
we may have
$(v^{(s)}_{x_1,i,p}-1)v^{(s)}_{x_1,i,p}\,=\,0$
for
$1\,\leqslant \, s\,\leqslant \, m$
,
$1\,\leqslant \, i \,\leqslant \, \gamma _s$
and any
$p$
. The Zariski closed subset
$Z$
of
$Y'$
defined by this condition satisfies
$\dim Z\, =\, \dim Y'-(-1+\sum _{s=1}^m\gamma _s) \leqslant nr(r-1)/2-2$
.
Case B. Consider the case where
$E\,=\,F_1\oplus F_2$
with
$\mu (F_1)\,\gt \,\mu (F_2)$
,
$r_i\,=\,\textrm {rank}\, F_i$
and each
$F_i$
is a successive extension of one stable vector bundle. In this case, we have
$m\,=\,2$
and
$\gamma _1\,=\,\gamma _2\,=\,1$
. So, we have
$\dim W\,=\, 1$
and
$\dim Y \,=\, 1+nr(r-1)/2$
. Since
$\mu (F_1)\,\gt \,\mu (F_2)$
and
$F_1,\, F_2$
are semistable, it follows that
$\textrm { Hom}(F_2,\,F_1)\,=\,0$
. So, we have
$\dim \textrm { Hom}(F_2,\,F_1)\,=\,\deg (F_2^{\vee }\otimes F_1)\,\gt \,0$
by the Riemann–Roch theorem, and

for a point
$x$
of
$X$
. In the case where
$\mu (F_2)\,=\,\mu (F_1(-x))$
, we have either

or
$\dim \textrm { Hom}(F_2,\,F_1(-x_2))\,=\,0$
, because
$x_1\,\neq \, x_2$
. So, in all cases of (5.13), at least one of the maps

is not zero. Choose a basis
$e_{x_i,1},\,\ldots ,\,e_{x_i,r_1}$
of
$F_1|_{x_i}$
and a basis
$e'_{x_i,1},\,\cdots ,\, e'_{x_i,r_2}$
of
$F_2|_{x_i}$
. Take a generator
$v_{x_i,1}e_{x_i,1}+\cdots +v_{x_i,r_1}e_{x_i,r_1}+v'_{x_i,1}e'_{x_i,1}+\cdots +v'_{x_i,r_2}e'_{x_i,r_2}$
of
$l^{(i)}_{r-1}$
. Applying the action of
$1_E+\textrm { Hom}(F_2,\, F_1)$
, we may have
$v_{x_2,q}\,=\,0$
for some
$q$
, or
$v'_{x_2,q'}\,=\,0$
for all
$q'$
. Moreover, applying the action of
$k^{\times }{\rm id}_{F_1}\times k^{\times }{\rm id}_{F_2}$
, we may have
$v_{x_1,p}\,=\,v'_{x_1,p'}$
for some
$p,\,p'$
, or
$v_{x_1,p}v'_{x_1,p'}\,=\,0$
for some
$p,\, p'$
. Let
$Y'$
be a disjoint union of subvarieties of
$Y$
where the following two conditions hold:
$v'_{x_2,q'}v_{x_2,q}\,=\,0$
for some
$q,\, q'$
and
$(v_{x_1,p}-v'_{x_1,p'})v_{x_1,p}v'_{x_1,p'}\,=\,0$
for some
$p,\, p'$
. Then we have

and every member of the complement
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
can be transformed by the actions of
$k^{\times }\cdot 1_{F_1}\times k^{\times }\cdot 1_{F_2}$
and
$1_E+\textrm { Hom}(F_2,\, F_1)$
to a quasi-parabolic bundle
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times y}$
for some
$y\,\in \, Y'$
. Let
$Y''$
be the Zariski closed subset of
$Y'$
defined by

For each point
$y\,\in \, Y''$
, write
$(E,\,\boldsymbol{l})\,\,:=\,\, (\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times y}$
. Set

Then
$H$
contains non-scalar automorphisms.
-
(I) Consider the case where
$H\ \not \subset \ k^{\times }{\rm id}_E+\textrm { Hom}(F_2,F_1)$ . Take
$\textbf {g}\,\in \, H\setminus \big ( k^{\times }{\rm id}_E+\textrm { Hom}(F_2,F_1)\big )$ . Then we can write
\begin{align*} \textbf {g}\ =\ \left(\begin{array}{c@{\quad}c} c_1{\rm Id}_{F_1} & b \\ 0 & c_2{\rm Id}_{F_2} \end{array}\right), \end{align*}
$c_1,\, c_2\,\in \, k^{\times }$ ,
$b\,\in \, \textrm { Hom}(F_2,\,F_1)$ and
$c_1\,\neq \, c_2$ .
-
(a) Consider the case where
$n\,\geqslant \, 3$ . Since
$\textbf {g}|_{x_3}$ has distinct eigenvalues
$c_1,\, c_2$ , the condition that
$\textbf {g}|_{x_3}$ preserves
$l^{(3)}_{r-1}$ implies that
$\dim Y''\,\leqslant \, \dim Y-1\leqslant nr(r-1)/2-2$ .
-
(b) Consider the case where
$r\,\geqslant \, 3$ . In this case, we have either
$r_1\,=\,\textrm { rank} F_1\,\geqslant \, 2$ or
$r_2\,=\,\textrm { rank} F_2\,\geqslant \, 2$ .
-
(i) Consider the case where
$r_2\,\geqslant \, 2$ . If
$l^{(i)}_{r-1}\,\subset \, F_1|_{x_i}$ for
$i\,=\,1$ or
$i\,=\,2$ , then
$Y'$ can be replaced by the locus satisfying this condition and we get that
$\dim Y'\,\leqslant \, nr(r-1)/2-2$ . So, we may assume that
$l^{(i)}_{r-1}\,\not \subset \, F_1|_{x_i}$ for
$i\,=\,1$ or
$i\,=\,2$ . Then we have
$\textbf {g}|_{l^{(i)}_{r-1}}\,=\,c_2{\rm id}_{l^{(i)}_{r-1}}$ , and
$\textbf {g}$ induces a linear map
$\overline {\textbf {g}}\,\colon \, E|_{x_i}/l^{(i)}_{r-1} \,\longrightarrow \, E|_{x_i}/l^{(i)}_{r-1}$ . Since the eigenvalues of
$\overline {\textbf {g}}$ are
$c_1,\, c_2$ and
$l^{(i)}_{r-2}/l^{(i)}_{r-1}$ is preserved by
$\overline {\textbf {g}}$ , it follows that
$\dim Y''\,\leqslant \, \dim Y'-1\,\leqslant \, nr(r-1)/2-2$ .
-
(ii) Consider the case where
$r_1\,\geqslant \, 2$ . If
$l^{(i)}_{r-1}\,\subset \, F_2|_{x_i}$ , then such a locus in
$Y'$ is of dimension at most
$nr(r-1)/2-2$ . So we may assume that
$l^{(i)}_{r-1}\,\not \subset \, F_2|_{x_i}$ . Since the induced map
$\overline {\textbf {g}}\,\colon \, E|_{x_i}/l^{(i)}_{r-1}\, \longrightarrow \, E|_{x_i}/l^{(i)}_{r-1}$ has distinct eigenvalues
$c_1,\, c_2$ and
$l^{(i)}_{r-2}/l^{(i)}_{r-1}$ is preserved by
$\overline {\textbf {g}}$ , it follows that
$\dim Y''\,\leqslant \, \dim Y'-1\,\leqslant \, nr(r-1)/2-2$ .
-
-
(II) Consider the case where
$H$ is contained in
$k^{\times }{\rm id}_E+\textrm { Hom}(F_2,\,F_1)$ .
-
(a) Assume that
$n\,\geqslant \, 3$ , in addition to
$H\,\subset \, k^{\times } {\rm id}_E+\textrm { Hom}(F_2,\,F_1)$ . We may assume that the composition of maps
\begin{align*} \left \{ a\,\in \,\textrm { Hom}(F_2,\,F_1) \,\big \vert \,\, {\rm id}_E+a\,\in \, H \right \} \,\hookrightarrow \, \textrm { Hom}(F_2,\,F_1)\,\longrightarrow \, \textrm { Hom}(F_2|_{x_3},\,F_1|_{x_3}) \end{align*}
$Y'$ is of dimension at most
$\dim Y'-1\leqslant nr(r-1)/2-2$ . Choose a basis
$e_{x_i,1},\, \ldots ,\, e_{x_i,r_1}$ of
$F_1|_{x_i}$ and a basis
$e'_{x_i,1},\, \ldots ,\, e'_{x_i,r_2}$ of
$F_2|_{x_i}$ for
$i\,=\,1,\,2$ . Take a generator
$v_{x_i,1}e_{x_i,1}+\cdots +v_{x_i,r_1}e_{x_i,r_1} +v'_{x_i,1}e'_{x_i,1}+\cdots +v'_{x_i,r_2}e'_{x_i,r_2}$ of
$l^{(i)}_{r-1}$ . Applying an automorphism
${\rm id}_E+a\,\in \, H$ with
$a\,\in \,\textrm { Hom}(F_2,\, F_1)$ satisfying the condition
$a|_{x_3}\,\neq \, 0$ , we can normalize
$l^{(3)}_{r-1}$ so that the condition
$v_{x_3,p}\,=\, 0$ holds for some
$p$ or the condition
$v'_{x_3,p'}\,=\, 0$ holds for all
$p'$ . The Zariski closed subset of
$Y''$ defined by this condition is of dimension at most
$\dim Y'-1 \leqslant nr(r-1)/2-2$ .
-
(b) Consider the case where
$r\,\geqslant \, 3$ while
$H\,\subset \, k^{\times }{\rm id}_E+\textrm { Hom}(F_2,F_1)$ is again assumed. We may assume the injectivity of the homomorphism
\begin{align*} \textrm { Hom}(F_2,\,F_1)\,\longrightarrow \, \textrm { Hom}(F_2|_{x_2},\,F_1|_{x_2}), \end{align*}
$Y'$ . Take a basis
$f_1,\,f_2,\, \ldots ,\, f_r$ of
$E|_{x_2}$ such that
$f_1$ is a generator of
$l^{(2)}_{r-1}$ . If there is an element
$1_E+a\,\in \, H$ such that
$a\,\in \,\textrm { Hom}(F_2,\,F_1)\setminus \{0\}$ and
${\rm Im}(a|_{x_2})\,\not \subset \, l^{(2)}_{r-1}$ , then, after applying such an automorphism, we can normalize a representative
$a_2f_2+\cdots +a_rf_r$ of a generator of
$l^{(2)}_{r-2}/l^{(2)}_{r-1}$ so that the condition
$a_p\,=\, 0$ holds for some
$p\,\geqslant \, 2$ . Such a locus in
$Y$ is of dimension at most
$r(r-1)n/2-2$ . If the condition
${\rm Im}(a|_{x_2})\,\subset \, l^{(2)}_{r-1}$ holds for all
$a\,\in \,\textrm { Hom}(F_2,F_1)$ satisfying
${\rm id}_E+a\,\in \, H$ , then we have
$l^{(2)}_{r-1}\,=\, {\rm Im}(a|_{x_2})$ for such an
$a$ with
$a\,\neq \, 0$ . So we may replace
$Y'$ with a Zariski closed subset whose dimension is at most
$r(r-1)n/2-(r-1)\,\leqslant \, r(r-1)n/2-2$ , because
$r\,\geqslant \, 3$ .
-
Therefore, in all cases, the disjoint union
$Z$
of all the locally closed subsets of
$Y''$
in the above argument and the pullback of flat families
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times Z}$
satisfy the assertion of the proposition.
Proposition 5.12. Assume that
$X\,=\,\mathbb{P}^1_k$
,
$L$
is a line bundle on
$\mathbb{P}^1_k$
and one of the following two holds:
-
(I)
$n\,\geqslant \, 5$ and
$r\,\geqslant \, 2$ ; or
-
(II)
$n\,=\,4$ and
$r\,\geqslant \, 3$ .
Then there exists a scheme
$Z$
of finite type over
$\textrm { Spec}\, k$
and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$\mathbb{P}^1\times Z$
over
$Z$
such that:
$\dim Z \,\leqslant \, -r^2+r(r-1)n/2-1$ ;
$\dim \textrm { End}\left ( (\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{\mathbb{P}^1\times \{z\}}\right ) \,\geqslant \, 2$ for any
$z\,\in \,Z$ ;
and each member of the complement
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{\mathbb{P}^1\times \{z\}}$
for some point
$z\,\in \, Z$
.
Proof. Take a quasi-parabolic bundle
$(E,\,\boldsymbol{l})$
. Write

with
$a_1\,\lt \,\cdots \,\lt \,a_m$
. If
$l^{(i)}_{r-1}\,\not \subset \, {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\big |_{x_i}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big |_{x_i}$
for some
$i$
, set

Repeating such process of elementary transformations and a twist by a line bundle, we may replace
$(E,\,\boldsymbol{l})$
with a quasi-parabolic bundle which satisfies one of the following two conditions:
-
(A)
$E\,\cong \,{\mathcal O}_{\mathbb{P}^1}^{\oplus r}$ ;
-
(B)
$E\,=\,{\mathcal O}_{\mathbb{P}^1}(a_1)^{\oplus r_1}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}$ and
$l^{(i)}_{r-1}\subset {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\big |_{x_i}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big |_{x_i}$ for any
$i$ , where
$a_1\,\lt \,a_2\,\lt \,\cdots \,\lt \,a_m$ .
Case A. Consider the case where
$E\,\cong \,{\mathcal O}_{\mathbb{P}^1}^{\oplus r}$
.
We will construct a parameter space for non-simple quasi-parabolic bundles
$(E,\,\boldsymbol{l})$
satisfying
$E\,\cong \,{\mathcal O}_{\mathbb{P}^1}^{\oplus r}$
. Let
$e_1,\,\cdots ,\,e_r$
be the basis of
$E$
obtained by pulling back the canonical basis of
${\mathcal O}_{\mathbb{P}^1}^{\oplus r}$
via the isomorphism
$E\,\xrightarrow {\,\sim \,}\, {\mathcal O}_{\mathbb{P}^1}^{\oplus r}$
. We may assume that
$l^{(1)}_*$
is given by
$l^{(1)}_j\,=\,\langle e_1,\,\cdots ,\,e_{r-j} \rangle$
for
$j\,=\,0,\,\cdots ,\,r-1$
, after applying an automorphism of
$E$
. Applying automorphisms of
$E$
fixing
$l^{(1)}_*$
, we may further assume that
$l^{(2)}_*$
is given by
$l^{(2)}_j\,=\,\langle e_{\sigma (1)},\,\cdots ,\, e_{\sigma (r-j)} \rangle$
for
$j\,=\,0,1,\,\cdots ,\,r-1$
, where
$\sigma$
is a permutation of
$\{1,\,\cdots ,\,r\}$
. Let
$w_1e_1+\cdots +w_re_r$
be a generator of
$l^{(3)}_{r-1}$
. Applying a diagonal automorphism of
$E$
, which automatically fixes
$l^{(1)}_*$
and
$l^{(2)}_*$
, we may assume that either
$w_i\,=\,1$
holds or
$w_i\,=\, 0$
holds for any
$i$
. Then the group of automorphisms of
$E$
fixing
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
becomes

Since
$\dim \textrm { End}(E,\,\boldsymbol{l})\,\geqslant \, 2$
by the assumption, it follows that either there is some
$(i,\,j)$
with
$i\,\lt \,j$
and
$\sigma (i)\,\lt \,\sigma (j)$
or there is some
$i$
satisfying the condition
$w_i\,=\,0$
.
-
(I) First assume that
$n\,\geqslant \, 5$ and
$r\,\geqslant \, 2$ .
-
(i) Consider the case where
$w_{i_1}\,=\,0$ for some
$i_1$ . Then there are automorphisms
$(a_{ij})$ in
$B''$ such that
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$ ,
$a_{ii}\,=\,1$ for
$i\neq i_1$ and
$a_{ij}\,=\,0$ for all
$i\,\neq \, j$ . Applying these automorphisms to a generator
$v\,=\,v_1e_1+\cdots +v_re_r$ of
$l^{(4)}_{r-1}$ , normalize
$v$ so that one of the following holds:
$v_{i_1}\,=\,0$ ; or
$v_{i_1}\,\neq \, 0$ and
$v_{i'}\,=\,0$ for any
$i'\,\neq \, i_1$ ; or
$v_{i_1}\,=\,v_{i'}\,\neq \, 0$ for some
$i'\,\neq \, i_1$ .
So there is a parameter space of
$l^{(4)}_{r-1}$ whose dimension is at most
$r-1-1\,=\,r-2$ .
-
(ii) Consider the case where
$w_i\,=\,1$ for every
$i$ . Then there are some
$i_1\,\lt \,i_2$ with
$\sigma (i_1)\,\lt \,\sigma (i_2)$ , because
$\dim B''\,\geqslant \,2$ . So there are automorphisms
$(a_{ij})$ in
$B''$ of the form
$a_{\sigma (i_1)\sigma (i_1)}\,=\,c\in k^{\times }\setminus \{1\}$ ,
$a_{\sigma (i_1)\sigma (i_2)}\,=\,1-c$ ,
$a_{ii}\,=\,1$ for
$i\,\neq \, \sigma (i_1)$ and
$a_{ij}\,=\,0$ if
$i\,\neq \, j$ and
$(i,\,j)\,\neq \,(\sigma (i_1),\,\sigma (i_2))$ . Applying these automorphisms to a generator
$v\,=\,v_1e_1+\cdots +v_re_r$ of
$l^{(4)}_{r-1}$ , normalize
$v$ so that one of the following holds:
$v_{\sigma (i_2)}\,=\,0$ ; or
$v_{\sigma (i_1)}\,=\,v_{\sigma (i_2)}\,\neq \, 0$ ; or
$v_{\sigma (i_1)}\,=\,0$ ,
$v_{\sigma (i_2)}\,\neq \, 0$ .
So there is a parameter space of
$l^{(4)}_{r-1}$ whose dimension is at most
$r-1-1\,=\,r-2$ .
In both cases A(I)(i) and A(I)(ii), consider the group of automorphisms
\begin{align*} B'''\,\,:=\,\, \left \{ g\in B'' \,\, \middle |\,\,\, {\textbf{g}}\ \rm fixes\ l^{(1)}_*,\,l^{(2)}_*,\,l^{(3)}_{r-1}\ and\ l^{(4)}_{r-1} \right \}. \end{align*}
$(E,\,l)$ is not simple, there is an automorphism
$\textbf {g}$ in
$B'''$ other than a scalar endomorphism. Then the parameter space of
$l^{(5)}_{r-1}$ preserved by
$\textbf {g}$ is of dimension at most
$r-1-1$ . Thus, there is a parameter space of
$l^{(1)}_*,\,\ldots ,\,l^{(n)}_*$ whose dimension is at most
\begin{align*} \sum _{j=1}^{r-2} j+2\bigg ( r-2+\sum _{j=1}^{r-2}j \,\bigg ) +(n-5)\sum _{j=1}^{r-1} j \,=\,-r^2+1+\frac {1}{2}r(r-1)n-2. \end{align*}
-
(II) Assume that
$n\,=\,4$ and
$r\,\geqslant \, 3$ .
-
(i) Assume that
$w_{i_1}\,=\,0$ for some
$i_1$ . Then there are automorphisms
$(a_{ij})$ in
$B''$ of the form
$a_{ii}\,=\,1\,\in \,k^{\times }$ for
$i\,\neq \, i_1$ ,
$a_{i_1i_1}\,=\,c\in \,k^{\times }$ and
$a_{ij}\,=\,0$ for all
$i\,\neq \, j$ . For a representative
$v\,=\,v_1e_1+\cdots +v_re_r\,\in \, l^{(3)}_{r-2}$ of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$ , we may assume, after adding an element of
$l^{(3)}_{r-1}$ , that
$v_{i_2}\,=\,0$ for some
$i_2\,\neq \, i_1$ . Applying an automorphism in
$B''$ of the above form, normalize
$v$ so that one of the following holds:
-
(1)
$v_{i_1}\,=\,0$ ; or
-
(2)
$v_{i_1}\,\neq \, 0$ and
$v_{i'}\,=\,0$ for any
$i'\,\neq \, i_1$ ; or
-
(3)
$v_{i_1}\,=\,v_{i_3}\,\neq \, 0$ for some
$i_3\,\neq \, i_1,\,i_2$ .
So there is a parameter space of
$l^{(3)}_{r-2}$ whose dimension is at most
$r-2-1\,=\,r-3$ .
-
-
(ii) Assume that
$w_i\,=\,1$ for any
$i$ . Then there are some
$i_1\,\lt \,i_2$ with
$\sigma (i_1)\,\lt \,\sigma (i_2)$ because
$B''\,\neq \,k^{\times }{\rm id}$ . Then there are automorphisms
$(a_{ij})$ in
$B''$ of the form
$a_{\sigma (i_1) \sigma (i_1)}\,=\,c\,\in \,k^{\times }\setminus \{1\}$ ,
$a_{\sigma (i_1) \sigma (i_2)}\,=\,1-c$ ,
$a_{ii}\,=\,1$ for
$i\,\neq \, \sigma (i_1)$ and
$a_{ij}\,=\,0$ if
$i\,\neq \, j$ and
$(i,\,j)\,\neq \,(\sigma (i_1),\,\sigma (i_2))$ . For a representative
$v\,=\,v_1e_1+\cdots +v_re_r\in l^{(3)}_{r-2}$ of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$ , we may assume, after adding an element of
$l^{(3)}_{r-1}$ , that
$v_{i'}\,=\,0$ for some
$i' \,\neq \, \sigma (i_1),\,\sigma (i_2)$ . Applying an automorphism in
$B''$ , normalize
$v$ so that one of the following holds:
$v_{\sigma (i_1)}\,=\,v_{\sigma (i_2)}$ ; or
$v_{\sigma (i_1)}v_{\sigma (i_2)}\,=\,0$ .
So there is a parameter space of
$l^{(3)}_{r-2}$ whose dimension is at most
$r-2-1\,=\,r-3$ .
In both cases A(II)(i) and A(II)(ii), consider the group of automorphisms
\begin{align*} B'''\,\,:=\,\, \left \{ \textbf {g}\,\in \, B'' \,\, \middle | \,\: \rm \textbf {g}\ fixes\ l^{(1)}_*,\,l^{(2)}_*,\,l^{(3)}_{r-1}\ and\ l^{(3)}_{r-2} \right \}. \end{align*}
$(E,\,l)$ is not simple, there is an automorphism
$\textbf {g}$ in
$B'''$ other than a scalar automorphism. The parameter space of
$l^{(4)}_{r-1}$ preserved by
$\textbf {g}$ is of dimension at most
$r-1-1\,=\,r-2$ . Thus, there is a parameter space of
$l^{(1)}_*,\,\ldots ,\,l^{(n)}_*$ whose dimension is at most
\begin{align*} (r-3)+\sum _{j=1}^{r-3} j \:+(r-2)+\sum _{j=1}^{r-2} j \: + \,\frac {1}{2}r(r-1) (n-4) =\, -r^2-1+\frac {1}{2}r(r-1)n. \end{align*}
Case B. Consider the case where
$E\,\cong \, {\mathcal O}_{\mathbb{P}^1}(a_1)^{\oplus r_1}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}$
with
$a_1\,\lt \,a_2\,\lt \,\cdots \,\lt \,a_m$
and
$l^{(i)}_{r-1}\,\subset \, \big ( {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big )\big |_{x_i}$
for any
$i$
.
We choose a basis
$e^{(i)}_{1,1},\,\cdots ,\,e^{(i)}_{1,r_1},\,e^{(i)}_{2,1},\,\cdots ,\,e^{(i)}_{2,r_2},\,\cdots , \,e^{(i)}_{m,1},\,\cdots ,\,e^{(i)}_{m,r_m}$
of
$E\big \vert _{x_i}$
corresponding to the given decomposition
$E\big \vert _{x_i}\,=\, {\mathcal O}_{\mathbb{P}^1}(a_1)\big |_{x_i}^{\oplus r_1}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)\big |_{x_i}^{\oplus r_m}$
. For
$1\, \leqslant \, p\, \leqslant \, m$
, let

be the projection to the
$p$
-th direct summand. So any element
$v\,\in \, E\big \vert _{x_i}$
can be uniquely written as follows:

We want to choose suitable generators
$v^{(i)}_{p^{(i)}(1),\,j^{(i)}(1)},\,\cdots ,\,v^{(i)}_{p^{(i)}(s),\,j^{(i)}(s)}$
of
$l^{(i)}_{r-s}$
. First, define a number
$p^{(i)}(1)$
with
$1\,\leqslant \, p^{(i)}(1)\,\leqslant \, m$
by setting

for each
$1\,\leqslant \, i\,\leqslant \, n$
. So, we can choose an element
$v\,=\,v_{p^{(i)}(1)}+v_{p^{(i)}(1)+1}+\cdots +v_m\in l^{(i)}_{r-1}$
with
$v_{p^{(i)}(1)}\,\neq \, 0$
. Put
$j^{(i)}(1)\,=\,1$
and set
$v^{(i)}_{p^{(i)}(1),j^{(i)}(1)}\,\,:=\,\,v$
. Consider the projection

for
$1\,\leqslant \, p\,\leqslant \, m$
. For
$2\,\leqslant \, s\,\leqslant \, r-1$
, define
$p^{(i)}(s)$
,
$j^{(i)}(s)$
and
$v^{(i)}_{p^{(i)}(s),j^{(i)}(s)}$
inductively on
$s$
. For each integer
$s$
with
$2\,\leqslant \, s\,\leqslant \, r-1$
, define
$p^{(i)}(s)$
by the condition

Set

Then we can take an element
$v^{(i)}_{p^{(i)}(s), j^{(i)}(s)}$
of
$l^{(i)}_{r-s}$
such that

By the construction, it follows that
$l^{(i)}_{r-s}$
is generated by
$v^{(i)}_{p^{(i)}(1),j^{(i)}(1)},\,\cdots ,\,v^{(i)}_{p^{(i)}(s),j^{(i)}(s)}$
.
Applying an automorphism of
$E$
given by an element of

we may assume that
$v^{(1)}_{p,j}\,=\,e^{(1)}_{p,j}$
for
$1\,\leqslant \, p\,\leqslant \, m$
and
$1\,\leqslant \, j\,\leqslant \, r_p$
. Note that the group of automorphisms of
$E$
fixing
$l^{(1)}_*$
is

If
$p\,\gt \,q$
, we can always take an element
$g\,=\,(a^{pq}_{jj'})$
of
$B'$
such that
$a^{pq}_{jj'}\big |_{x_2}\,\neq \, 0$
. So, after applying an automorphism in
$B'$
to
$l^{(2)}_*$
, it may be assumed that the condition
$v^{(2)}_{p,j}\,=\,e^{(2)}_{p,\sigma _p(j)}$
holds for
$1\,\leqslant \, j\,\leqslant \, r_p$
, where
$\sigma _p$
is a permutation of
$\{1,\,\cdots ,\,r_p\}$
. The generator
$v^{(3)}_{p^{(3)}(1),p^{(3)}(1)}$
of
$l^{(3)}_{r-1}$
can be written as

Consider the diagonal automorphisms
$\textbf {g}\,=\,(a^{pq}_{jj'})$
of
$E$
given by
$a^{pq}_{jj'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
and
$a^{pp}_{jj}\,\in \,k^{\times }$
for any
$(p,\,j)$
. After applying such automorphisms, normalize
$v^{(3)}_{1,1}$
such that either
$w_{p,j}\,=\,1$
holds or
$w_{p,j}\,=\,0$
holds for any
$p,\,j$
. Note that the conditions
$p^{(1)}(1)\,\geqslant \,2$
,
$p^{(2)}(1)\,\geqslant \, 2$
and
$w_{1,1}\,=\,0$
hold, because of the assumption that
$l^{(i)}_{r-1}\,\subset \, \big ( {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big )\big |_{x_i}$
for
$i\,=\,1,\,2,\,3$
.
(I) If
$n\,\geqslant \,5$
, then we can give a parameter space of
$l^{(i)}_{r-1}$
whose dimension is at most
$r-2$
for each
$4\,\leqslant \, i \,\leqslant \, n$
, because
$l^{(i)}_{r-1}\,\subset \, \big ( {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big )\big |_{x_i}$
. So there is a parameter space of
$(E,\,l)$
whose dimension is at most

(II) Assume that
$n\,=\,4$
and
$r\,\geqslant \, 3$
. Recall that
$v^{(3)}_{p^{(3)}(1),p^{(3)}(1)}$
is a generator of
$l^{(3)}_{r-1}$
and we can write
$v^{(3)}_{p^{(3)}(1),p^{(3)}(1)}\,=\,\sum _{p,j} w_{p,j}e^{(3)}_{p,j}$
with
$w_{1,1}\,=\, 0$
. Take a representative
$u\,=\,\sum _{p,j} u_{p,j} e^{(3)}_{p,j}\,\in \, l^{(3)}_{r-2}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
with the normalized condition
$u_{p^{(3)}(1),j^{(3)}(1)}\,=\,0$
. Consider the diagonal automorphisms
$\textbf {g}\,=\,(a^{pq}_{jj'})$
of
$E$
determined by
$a^{pq}_{jj'}\,=\,0$
for
$(p,\,j)\,\neq \, (q,\,j')$
,
$a^{11}_{1,1}\,=\,c\,\in \,k^{\times }$
and
$a^{p,p}_{j,j}\,=\,1\,\in \,k^{\times }$
for
$(p,\,j)\,\neq \, (1,\,1)$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Choose an index
$(q,\,j')\,\neq \, (p^{(3)}(1),\,j^{(3)}(1)),\,(1,\,1)$
. Applying automorphisms of the above form to
$u$
, we may assume that one of the following holds:
-
(a)
$u_{1,1}\,=\,0$ ; or
-
(b)
$u_{q,j'}\,=\,0$ ; or
-
(c)
$u_{1,1}\,=\,u_{q,j'}\,\neq \, 0$ .
So we can give a parameter space of such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-3$
. Furthermore, the parameter space of
$l^{(4)}_{r-1}$
is at most
$r-2$
, because of the condition
$l^{(4)}_{r-1}\,\subset \, \big ( {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big )\big |_{x_4}$
. So we can give a parameter space of
$(E,\,l)$
whose dimension is at most

which is equal to
$-r^2+1+r(r-1)n/2-2$
as
$n\,=\,4$
.
Proposition 5.13. Assume that
$X\,=\,\mathbb{P}^1_k$
,
$n\,=\,3$
,
$r\,\geqslant \, 4$
and
$L$
is a line bundle on
$\mathbb{P}^1_k$
. Then there exists a scheme
$Z$
of finite type over
$\textrm {Spec}\, k$
, and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$\mathbb{P}^1\times Z$
over
$Z$
, such that:
-
(a)
$\dim Z \,\leqslant \, (r^2-3r+2)/2-2$ ;
-
(b)
$\dim \textrm { End}\big ( (\widetilde {E},\,\widetilde {\boldsymbol{l}}) |_{\mathbb{P}^1\times \{z\}} \big ) \,\geqslant \, 2$ for any
$z\,\in \, Z$ ;
and each member of
$\left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0\textrm { -reg}}_{{\rm par}}(L)^{\circ } \right |$
is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{\mathbb{P}^1\times \{z\}}$
for some point
$z\,\in \, Z$
.
Proof. First we fix a universal constant

As in the proof of Proposition 5.12, we may assume that the quasi-parabolic bundles
$(E,\,\boldsymbol{l})$
satisfy one of the following conditions:
-
(A)
$E\,\cong \,{\mathcal O}_{\mathbb{P}^1}^{\oplus r}$ ; or
-
(B)
$E\,=\,{\mathcal O}_{\mathbb{P}^1}(a_1)^{\oplus r_1}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}$ and
$l^{(i)}_{r-1}\subset {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\big |_{x_i}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big |_{x_i}$ for any
$i$ , where
$a_1\,\lt \,a_2\,\lt \,\cdots \,\lt \,a_m$ .
Case A. First, consider the case where
$E\,\cong \,{\mathcal O}_{\mathbb{P}^1}^{\oplus r}$
.
As in the proof of Proposition 5.12, we may assume that
$l^{(1)}_*$
is determined by the standard basis
$e_1,\,\cdots ,\,e_r$
and
$l^{(2)}_*$
is determined by the basis
$e_{\sigma (1)},\,\cdots ,\,e_{\sigma (r)}$
for a permutation
$\sigma$
of
$\{1,\,\cdots ,\,r\}$
while
$l^{(3)}_{r-1}$
is generated by
$w\,=\,w_1e_1+\ldots +w_re_r$
with
$w_i\,=\,1$
or
$w_i\,=\,0$
for each
$i$
. Consider the following three cases:
-
(a)
$w_{i_1}\,=\,w_{i_2}\,=\,0$ for some
$i_1\,\neq \, i_2$ ;
-
(b)
$w_{i_1}\,=\,0$ for some
$i_1$ and
$w_i\,=\,1$ for any
$i\neq i_1$ ;
-
(c)
$w_i\,=\,1$ for any
$i$ .
-
(a) Assume that
$w_{i_1}\,=\,w_{i_2}\,=\,0$ for
$i_1\,\neq \, i_2$ . Fix indices
$i_3,\,i_4$ such that
$w_{i_3}\,=\,1$ and
$i_4\,\neq \, i_1,\,i_2,\,i_3$ . Consider the automorphisms
$(a_{ij})$ of
$E$ satisfying
$a_{i_1i_1}\,=\,c_{i_1}\,\in \,k^{\times }$ ,
$a_{i_2i_2}\,=\,c_{i_2}\,\in \,k^{\times }$ ,
$a_{ii}\,=\,1$ for
$i\,\neq \, i_1,\,i_2$ and
$a_{ij}\,=\,0$ for
$i\,\neq \, j$ . Then such automorphisms preserve
$l^{(1)}_*$ ,
$l^{(2)}_*$ and
$l^{(3)}_{r-1}$ . Normalize a representative
$v\,=\,v_1e_1+\ldots +v_re_r\in l^{(3)}_{r-2}$ of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$ such that
$v_{i_3}\,=\,0$ after adding an element of
$l^{(3)}_{r-1}$ . Applying the above type of automorphisms to
$v$ , we can assume that one of the following statements holds:
-
(i)
$v_{i_1}\,=\,v_{i_2}\,=\,0$ ;
-
(ii)
$v_{i_1}\,=\,v_{i_4}\,=\,0$ ;
-
(iii)
$v_{i_2}\,=\,v_{i_4}\,=\,0$ ;
-
(iv)
$v_{i_1}\,=\,0$ and
$v_{i_2}\,=\,v_{i_4}\,\neq \, 0$ ;
-
(v)
$v_{i_2}\,=\,0$ and
$v_{i_1}\,=\,v_{i_4}\,\neq \, 0$ ;
-
(vi)
$v_{i_1}\,=\,v_{i_2}\,\neq \, 0$ and
$v_{i_4}\,=\,0$ ;
-
(vii)
$v_{i_1}\,=\,v_{i_2}\,=\,v_{i_4}\,\neq \, 0$ .
So there is a parameter space of
$l^{(3)}_{r-2}$ whose dimension is at most
$r-2-2\,=\,r-4$ . Adding the data of
$l^{(3)}_{r-3},\,\cdots ,\,l^{(3)}_1$ , we can get a parameter space of
$(E,\,\boldsymbol{l})$ whose dimension is at most
\begin{align*} (r-4) + \sum _{j=1}^{r-3} j \ = \ \frac {r^2-3r+2} {2} - 2. \end{align*}
-
-
(b) Assume that
$w_{i_1}\,=\,0$ for some
$i_1$ and
$w_i\,=\,1$ for any
$i\,\neq \, i_1$ . Fix an index
$i_2$ other than
$i_1$ . For a representative
$v\,=\,v_1e_1+\cdots +v_re_r\,\in \, l^{(3)}_{r-2}$ of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$ , we may assume, after adding an element of
$l^{(3)}_{r-1}$ , that
$v_{i_2}\,=\,0$ . Then we have one of the following three cases:
-
(i)
$v_{i_1}\,=\,0$ ;
-
(ii)
$v_{i_1}\,\neq \, 0$ and
$v_i\,=\,0$ for any
$i\,\neq \, i_1,\,i_2$ ;
-
(iii)
$v_{i_1}\,\neq \, 0$ and
$v_{i_3}\,\neq \, 0$ for some
$i_3$ with
$i_3\,\neq \, i_1$ and
$i_3\,\neq \, i_2$ .
-
(i) Consider the case where
$v_{i_1}\,=\,0$
. Then we can give a parameter space of
$l^{(3)}_{r-2}$
whose dimension is at most
$r-2-1\,=\,r-3$
. Consider the automorphisms
$\textbf {g}\,=\, (a_{ij})$
of
$E$
given by
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1$
and
$a_{ij}\,=\,0$
for
$i\,\neq \, j$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
,
$l^{(3)}_{r-1}$
and also
$l^{(3)}_{r-2}$
. Since
$v\,\neq \, 0$
, we may choose an index
$i_3$
such that
$v_{i_3}\,\neq \, 0$
and
$i_3\,\neq \, i_1,\,i_2$
. For a representative
$u\,=\,u_1e_1+\cdots +u_re_r\in l^{(3)}_{r-3}$
of a generator of
$l^{(3)}_{r-3}/l^{(3)}_{r-2}$
, we may assume, after adding an element in
$l^{(3)}_{r-2}$
, that
$u_{i_2}\,=\,u_{i_3}\,=\,0$
. After applying the above type of automorphisms to
$u$
, we may assume that one of the following statements holds:
$u_{i_1}\,=\,0$ ;
$u_{i_1}\,\neq \, 0$ and
$u_i\,=\,0$ for
$i\,\neq \, i_1,\,i_2,\,i_3$ ;
$u_{i_1}\,=\,u_{i_4}\,\neq \, 0$ for some
$i_4\,\neq \, i_1,\,i_2,\,i_3$ .
In all these cases, there is a parameter space of
$l^{(3)}_{r-3}$
whose dimension is at most
$r-3-1\,=\,r-4$
. Adding the data of
$l^{(3)}_{r-4},\,\cdots ,\,l^{(3)}_1$
, we can get a parameter space of
$(E,\,\boldsymbol{l})$
whose dimension is at most

(ii) Consider the case where
$v_{i_1}\,\neq \, 0$
and
$v_i\,=\,0$
for any
$i\,\neq \, i_1,\,i_2$
. Then
$l^{(3)}_{r-2}$
is uniquely determined. So the dimension of the parameter space of such
$(E,\,\boldsymbol{l})$
is at most

(iii) Consider the case where
$v_{i_1}\,\neq \, 0$
and
$v_{i_3}\,\neq \, 0$
for some
$i_3$
with
$i_3\,\neq \, i_1$
and
$i_3\,\neq \, i_2$
. Recall again that we normalize a representative
$v\,\in \, l^{(3)}_{r-2}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
such that
$v_{i_2}\,=\,0$
. Suppose that the condition
$\sigma (i)\,\gt \,\sigma (j)$
holds for any
$i\,\lt \,j$
. Then the automorphisms of
$E$
preserving
$l^{(1)}_*$
and
$l^{(2)}_*$
are only diagonal automorphisms
$\textbf {g}\,=\,(a_{ij})$
, which satisfy the condition
$a_{ij}\,=\,0$
for
$i\,\neq \, j$
. If
$\textbf {g}\,=\,(a_{ij})$
preserves
$l^{(3)}_{r-1}\,=\,\langle w \rangle$
and
$l^{(3)}_{r-2}\,=\,\langle w,\,v\rangle$
in addition, then we have
$a_{ii}\,=\,a_{jj}$
for
$i,\,j\,\neq \, i_1$
and
$a_{i_1i_1}\,=\,a_{i_3i_3}$
. So
$\textbf {g}$
must be a constant scalar multiplication, which contradicts the assumption that
$\dim {\textrm { Aut}}(E,\boldsymbol{l})\,\geqslant \,2$
. Thus, we have the following:
There are
$i_0\,\,\lt \,\,j_0$ satisfying
$\sigma (i_0)\,\,\lt \,\,\sigma (j_0)$ .
So, consider the following cases:
-
(
$\alpha$ )
$\sigma (j_0)\,=\,i_1$ and
$\sigma (i_0)\,=\,i_2$ ;
-
(
$\beta$ )
$\sigma (j_0)\,=\,i_1$ and
$\sigma (i_0)\,\neq \, i_2$ ;
-
(
$\gamma$ )
$\sigma (j_0)\,\neq \, i_1$ and
$\sigma (i_0)\,=\,i_2$ ;
-
(
$\delta$ )
$\sigma (j_0)\,\neq \, i_1$ and
$\sigma (i_0)\,\neq \, i_1,\,i_2$ ;
-
(
$\epsilon$ )
$\sigma (i_0)\,=\,i_1$ and
$\{ j\,\in \,\{1,\,\cdots ,\,r\} \, \, \big \vert \, \: j\,\gt \,i,\; \sigma (j)\,\gt \,\sigma (i) \}\,=\,\emptyset$ for any
$i\,\neq \, i_0$ .
More precisely, in the remaining case other than (
$\alpha$
), (
$\beta$
), (
$\gamma$
) and (
$\delta$
), we have
$\sigma (i_0)\,=\,i_1$
. If there are
$i'\,\neq \, i_0$
and
$j'\,\gt \,i'$
satisfying
$\sigma (j')\,\gt \,\sigma (i')$
, then we replace
$(i_0,\,j_0)$
with
$(i',\,j')$
and reduce to the case (
$\alpha$
), (
$\beta$
), (
$\gamma$
) or (
$\delta$
). Otherwise, we may assume (
$\epsilon$
).
(
$\alpha$
) Assume that
$\sigma (i_0)\,=\,i_2$
and
$\sigma (j_0)\,=\,i_1$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of
$E$
given by
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$
,
$a_{\sigma (i_0)\sigma (j_0)}\,=\,a_{i_2i_1}\,=\,a\,\in \,k$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1\,=\,\sigma (j_0)$
and
$a_{ij}\,=\,0$
for
$i\,\neq \, j$
satisfying
$(i,\,j)\,\neq \,(i_2,\,i_1)$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. The coefficient of
$e_{i_2}$
in

is
$v_{\sigma (i_0)}+av_{\sigma (j_0)}\,=\,av_{\sigma (j_0)}$
because of
$v_{\sigma (i_0)}\,=\,v_{i_2}\,=\,0$
, and hence the normalized representative of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
becomes

If we choose an index
$i_4$
other than
$i_1,\,i_2,\,i_3$
, we may assume that one of the following two holds:
-
(a)
$v_{i_1}\,=\,v_{i_3}\,=\,v_{i_4}\,\neq \, 0$ ;
-
(b)
$v_{i_1}\,=\,v_{i_3}\,\neq \, 0$ and
$v_{i_4}\,=\,0$ .
So we can give a parameter space for such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\beta$
) Assume that
$\sigma (j_0)\,=\,i_1$
and
$\sigma (i_0)\,\neq \,i_2$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of
$E$
given by
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$
,
$a_{\sigma (i_0)\sigma (j_0)}\,=\,a\,\in \,k$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1\,=\,\sigma (j_0)$
and
$a_{ij}\,=\,0$
for
$i\,\neq \, j$
satisfying
$(i,\,j)\,\neq \,(\sigma (i_0),\,\sigma (j_0))$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}\,=\,\langle w\rangle$
. Since

we may assume that one of the following holds:
-
(a)
$\sigma (i_0)\,\neq \, i_3$ and
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}\,=\,v_{i_3}\,\neq \, 0$ ;
-
(b)
$\sigma (i_0)\,=\,i_3$ and
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}\,=\,v_{i_4}\,\neq \, 0$ for some
$i_4$ other than
$i_1,\,i_3,\,i_2$ ;
-
(c)
$\sigma (i_0)\,=\,i_3$ ,
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}$ and
$v_i\,=\,0$ for any
$i$ other than
$i_1(=\,\sigma (j_0)),\, i_3$ .
So we can give a parameter space of such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\gamma$
) Assume that
$\sigma (j_0)\,\neq \, i_1$
and
$\sigma (i_0)\,=\,i_2$
. In this case, consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of the form
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$
,
$a_{i_2i_2}\,=\,a\,\in \,k^{\times }\setminus \{1\}$
,
$a_{i_2\sigma (j_0)}\,=\,1-a$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1,\,i_2$
and
$a_{ij}\,=\,0$
for any
$i\,\neq \,j$
satisfying
$(i,\,j)\,\neq \, (i_2,\,\sigma (j_0))$
. Then such a
$\textbf {g}$
preserves
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Since the
$e_{i_2}$
-coefficient of

is
$av_{i_2}+(1-a)v_{\sigma (j_0)}\,=\,(1-a)v_{\sigma (j_0)}$
, we should replace
$\textbf {g}v$
with its normalization

Fix an index
$i_4$
other than
$\sigma (j_0)$
,
$i_1$
and
$i_2$
. After applying an automorphism of the above form, we may assume that one of the following holds:
$\sigma (j_0)\,\neq \, i_3$ and
$v_{i_1}\,=\,v_{i_3}\,=\,v_{\sigma (j_0)}\,\neq \, 0$ ;
$\sigma (j_0)\,\neq \, i_3$ and
$v_{i_1}\,=\,v_{i_3}\,=\,\lambda _0 v_{\sigma (j_0)}\,\neq \, 0$ (see (5.14) for
$\lambda _0$ );
$\sigma (j_0)\,\neq \, i_3$ ,
$v_{i_1}\,=\,v_{i_3}\,\neq \, 0$ and
$v_{\sigma (j_0)}\,=\,0$ ;
$\sigma (j_0)\,=\,i_3$ and
$v_{i_1}\,=\,v_{\sigma (j_0)}\,=\,v_{i_4}\,\neq \, 0$ ;
$\sigma (j_0)\,=\,i_3$ ,
$v_{i_1}\,=\,v_{\sigma (j_0)}$ and
$v_{i_4}\,=\,0$ .
So we can give a parameter space of such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\delta$
) Assume that
$\sigma (j_0)\,\neq \, i_1$
and
$\sigma (i_0)\,\neq \, i_1,\,i_2$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of
$E$
given by
$a_{i_1i_1}\,=\,c\,\in \,k^{\times }$
,
$a_{\sigma (i_0)\sigma (i_0)}\,=\,a\,\in \,k^{\times }$
,
$a_{\sigma (i_0),\, \sigma (j_0)}\,=\,1-a$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1,\, \sigma (i_0)$
and
$a_{ij}\,=\,0$
for
$i\,\neq \, j$
satisfying
$(i,\,j)\,\neq \,(\sigma (i_0),\,\sigma (j_0))$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
, and we have

In the case where
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}$
, we can normalize
$v$
so that the condition
$v_{i_1}\,=\,v_{i_3}$
holds. In the case where
$v_{\sigma (i_0)}\,\neq \, v_{\sigma (j_0)}$
, we can normalize
$v$
so that one of the following holds:
-
(1)
$\sigma (i_0)\,\neq \,i_3$ and
$v_{i_1}\,=\,v_{\sigma (i_0)}\,=\,v_{i_3}\,\neq \, 0$ ;
-
(2)
$\sigma (i_0)\,=\,i_3$ and
$v_{i_1}\,=\,v_{\sigma (i_0)}\,=\,v_{i_4}\neq 0$ for some
$i_4$ other than
$i_1,\,i_2,\,i_3$ ;
-
(3)
$\sigma (i_0)\,=\,i_3$ and
$v_{i_1}\,=\,v_{\sigma (i_0)}\,=\,\lambda _0 v_{i_4}\,\neq \, 0$ for some
$i_4$ other than
$i_1,\,i_2,\,i_3$ (see (5.14) for
$\lambda _0$ );
-
(4)
$\sigma (i_0)\,=\,i_3$ ,
$v_{i_1}\,=\,v_{\sigma (i_0)}\,\neq \, 0$ and
$v_{i_4}\,=\,0$ for some
$i_4$ other than
$i_1,\,i_2,\,i_3$ .
So we can give a parameter space of such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\epsilon$
) Assume that
$\sigma (i_0)\,=\,i_1$
and that
$\{ j\,\gt \,i \, \,| \: \sigma (j)\,\gt \,\sigma (i)\}\,=\,\emptyset$
for all
$i\,\neq \, i_0$
. Then the group of automorphisms of
$E$
preserving
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}\,=\,\langle w \rangle$
becomes

Suppose that for any index
$j_1$
satisfying
$j_1\,\neq \, j_0$
and
$i_0\,\lt \,j_1$
, we have
$\sigma (i_0)\,\gt \,\sigma (j_1)$
. Then any automorphism
$\textbf {g}$
in
$B''$
becomes diagonal. In other words,
$\textbf {g}\,=\,(a_{ij})$
satisfies the following conditions:
$a_{ij}\,=\,0$
for
$i\,\neq \,j$
and there is a
$c\,\in \,k^{\times }$
such that
$a_{ii}\,=\,c$
for
$i\,\neq \, i_1$
. If
$\textbf {g}$
further preserves
$l^{(3)}_{r-2}$
, then we have
$a_{i_1i_1}\,=\,a_{i_3i_3}\,=\,c$
, because
$v_{i_1}\,\neq \, 0$
,
$v_{i_3}\,\neq \, 0$
and
$v_{i_2}\,=\,0$
. Thus
$\textbf {g}$
must be a constant scalar multiplication, which is a contradiction because
$(E,\,l)$
is not simple.
So there is an index
$j_1$
with
$j_1\,\neq \, j_0$
satisfying the conditions
$i_0\,\lt \,j_1$
and
$\sigma (i_0)\,\lt \,\sigma (j_1)$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of the form
$a_{i_1i_1}\,=\,c'\,\in \,k^{\times }$
,
$a_{i_1\sigma (j_0)}\,=\,a\,=\,-a_{i_1\sigma (j_1)}\,\in \,k$
,
$a_{ii}\,=\,1$
for
$i\,\neq \, i_1$
and
$a_{ij}\,=\,0$
for any
$i\,\neq \, j$
satisfying
$(i,\,j)\,\neq \,(i_1,\, \sigma (j_0)),\, (i_1,\,\sigma (j_1))$
. Recall that the representative
$v\,=\,\sum _{i=1}^r v_ie_i$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
is normalized so that
$v_{i_2}\,=\,0$
. We further normalize a representative
$u\,=\,\sum _{i=1}^r u_i e_i\in l^{(3)}_{r-3}$
of a generator of
$l^{(3)}_{r-3}/l^{(3)}_{r-2}$
so that
$u_{i_2}\,=\,u_{i_3}\,=\,0$
. We may assume that
$\{ \sigma (j_0),\,\sigma (j_1)\}\,\neq \,\{i_2,\,i_3\}$
, because otherwise we can replace
$i_2$
or
$i_3$
by another index
$i_4$
other than
$i_1,\,i_2,\,i_3$
according to whether
$v_{i_4}\,=\,0$
or
$v_{i_4}\,\neq \, 0$
. So assume that
$\sigma (j_0)\,\neq \, i_2,\,i_3$
. Applying an automorphism
$\textbf {g}$
of the above form to
$v$
and
$u$
, we have

So we may assume that one of the following holds:
-
(1)
$v_{\sigma (j_0)}\,=\,v_{\sigma (j_1)}$ and
$u_{\sigma (j_0)}\,=\,u_{\sigma (j_1)}$ ;
-
(2)
$v_{\sigma (j_0)}\,=\,v_{\sigma (j_1)}$ ,
$u_{\sigma (j_0)}\,\neq \, u_{\sigma (j_1)}$ and
$u_{i_1}\,=\,u_{\sigma (j_0)}-u_{\sigma (j_1)}$ ;
-
(3)
$u_{\sigma (j_0)}\,=\,u_{\sigma (j_1)}$ ,
$v_{\sigma (j_0)}\,\neq \, v_{\sigma (j_1)}$ and
$v_{i_1}\,=\,v_{\sigma (j_0)}-v_{\sigma (j_1)}$ ;
-
(4)
$v_{\sigma (j_0)}-v_{\sigma (j_1)}\,\neq \, 0$ ,
$u_{\sigma (j_0)}-u_{\sigma (j_1)}\,\neq \, 0$ ,
$v_{i_1}(u_{\sigma (j_0)}-u_{\sigma (j_1)})-u_{i_1}(v_{\sigma (j_0)}-v_{\sigma (j_1)})\,=\,0$ and
$v_{i_1}\,=\,v_{\sigma (j_0)}-v_{\sigma (j_1)}$ ;
-
(5)
$v_{\sigma (j_0)}-v_{\sigma (j_1)}\,\neq \, 0$ ,
$u_{\sigma (j_0)}-u_{\sigma (j_1)}\,\neq \, 0$ ,
$v_{i_1}(u_{\sigma (j_0)}-u_{\sigma (j_1)})-u_{i_1}(v_{\sigma (j_0)}-v_{\sigma (j_1)})\,\neq \, 0$ ,
$v_{i_1}\,=\,v_{\sigma (j_0)}-v_{\sigma (j_1)}$ and
$u_{i_1}\,=\,\lambda _0(u_{\sigma (j_0)}-u_{\sigma (j_1)})$ .
In each of the above cases, we can give a parameter space of
$l^{(3)}_{r-2}$
and
$l^{(3)}_{r-3}$
whose dimension is at most
$r-3+r-4\,=\,2r-7$
.
In all cases of A(b)(iii), we can give a parameter space of
$(E,\,\boldsymbol{l})$
whose dimension is at most

(c) Consider the case where
$w_\ell \,=\,1$
for any
$\ell$
.
(i) Assume further that there are
$i_1\,\lt \,j_1$
and
$i_2\,\lt \,j_2$
satisfying the conditions
$\sigma (i_1)\,\neq \, \sigma (i_2)$
,
$\sigma (i_1)\,\lt \,\sigma (j_1)$
and
$\sigma (i_2)\,\lt \,\sigma (j_2)$
. Let
$B''$
be the group of automorphisms of
$E$
preserving
$l^{(1)}_*,\,l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Then
$B''$
contains two types of automorphisms
$(a_{ij})$
,
$(b_{ij})$
such that:
$a_{\sigma (i_1)\,\sigma (i_1)}\,=\,c\,\in \,k^{\times }$ ,
$a_{\sigma (i_1)\,\sigma (j_1)}\,=\,1-c$ ,
$a_{ii}\,=\,1$ for
$i\,\neq \,\sigma (i_1)$ and
$a_{ij}\,=\,0$ for
$i\,\neq \, j$ satisfying the condition
$(i,\,j)\,\neq \, (\sigma (i_1),\,\sigma (j_1))$ ;
$b_{\sigma (i_2)\,\sigma (i_2)}\,=\,c'\,\in \,k^{\times }$ ,
$b_{\sigma (i_2)\,\sigma (j_2)}\,=\,1-c'$ ,
$b_{ii}\,=\,1$ for
$i\,\neq \, \sigma (i_2)$ and
$b_{ij}\,=\,0$ for
$i\,\neq \, j$ satisfying the condition
$(i,\,j)\,\neq \,(\sigma (i_2),\,\sigma (j_2))$ .
For a representative
$v\,=\,v_1e_1+\cdots +v_re_r$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
, we may assume, after adding an element of
$l^{(3)}_{r-1}$
, that
$v_{i'_2}\,=\,0$
for some
$i'_2$
such that
$i'_2\,\neq \,\sigma (i_1),\,\sigma (j_1),\,\sigma (i_2)$
. We may further assume that
$i'_2\,\neq \, \sigma (j_2)$
if
$\sigma (i_1),\,\sigma (j_1),\,\sigma (i_2),\,\sigma (j_2)$
are not distinct. Applying automorphisms of the above type, we may assume that one of the following holds:
-
(1)
$j_1\,=\,j_2$ ,
$v_{\sigma (j_1)}\,=\,0$ and
$(v_{\sigma (i_1)}-v_{\sigma (i_2)})v_{\sigma (i_1)}v_{\sigma (i_2)}\,=\,0$ ;
-
(2)
$j_1\,=\,j_2$ ,
$v_{\sigma (j_1)}\,\neq \, 0$ and
$(v_{\sigma (j_1)}-v_{\sigma (i_1)})(v_{\sigma (j_1)}-\lambda _0v_{\sigma (i_1)}) \,=\, (v_{\sigma (j_1)}-v_{\sigma (i_2)})(v_{\sigma (j_1)}-\lambda _0v_{\sigma (i_2)})\,=\,0$ ;
-
(3)
$j_1\,\neq \,j_2$ and
$v_{\sigma (j_1)}(v_{\sigma (i_1)}-v_{\sigma (j_1)})\,=\,v_{\sigma (j_2)}(v_{\sigma (i_2)}-v_{\sigma (j_2)})\,=\,0$ ;
-
(4)
$j_1\,\neq \, j_2$ ,
$0\,\neq \, v_{\sigma (j_1)}\,=\,\lambda _0v_{\sigma (i_1)}$ and
$(v_{\sigma (i_2)}-v_{\sigma (j_2)})v_{\sigma (j_2)}\,=\, 0$ ;
-
(5)
$j_1\,\neq \, j_2$ ,
$(v_{\sigma (i_1)}-v_{\sigma (j_1)})v_{\sigma (j_1)}\,=\,0$ and
$0\,\neq \, v_{\sigma (j_2)}\,=\,\lambda _0v_{\sigma (i_2)}$ ;
-
(6)
$j_1\,\neq \, j_2$ ,
$v_{\sigma (i_1)}\,=\,\lambda _0v_{\sigma (j_1)}\,\neq \, 0$ and
$v_{\sigma (i_2)}\,=\,\lambda _0v_{\sigma (j_2)}\,\neq \, 0$ .
So we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-2-2\,=\,r-4$
. Adding the data of
$l^{(3)}_{r-3},\,\cdots ,\,l^{(3)}_1$
, we can get a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(ii) Consider the rest case of A-(c). So, there is at most one
$i_0$
such that there is
$j\,\gt \,i_0$
for which
$\sigma (i_0)\,\lt \,\sigma (j)$
. Recall that we assumed that
$w_i\,=\,1$
for any
$i$
. Then the automorphism group
$B''$
of
$E$
preserving
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
becomes

Since there are non-scalar automorphisms in
$B''$
, there is some
$j_0\,\gt \,i_0$
for which
$\sigma (j_0)\,\gt \,\sigma (i_0)$
. Choosing
$i'_2$
other than
$\sigma (i_0)$
and
$\sigma (j_0)$
, we can normalize a representative
$v\,=\,v_1e_1+\cdots +v_re_r$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
so that
$v_{i'_2}\,=\,0$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
of
$E$
given by
$a_{ii}\,=\,1$
for
$i\,\neq \,\sigma (i_0)$
,
$a_{\sigma (i_0)\sigma (i_0)}\,=\,c\,\in \,k^{\times }$
,
$a_{\sigma (i_0)\sigma (j_0)}\,=\,1-c$
and
$a_{ij}\,=\,0$
for any
$i\neq j$
such that
$(i,\,j)\,\neq \,(\sigma (i_0),\,\sigma (j_0))$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Choose
$i'_3$
other than
$\sigma (i_0),\,\sigma (j_0),\, i'_2$
. Since
$v$
is sent to

by the automorphism
$\textbf {g}$
, we can assume that one of the following holds:
-
(
$\alpha$ )
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}$ ;
-
(
$\beta$ )
$v_{\sigma (i_0)}\,\neq \, v_{\sigma (j_0)}$ and
$v_{\sigma (j_0)}\,=\,v_{i'_3}$ ;
-
(
$\gamma$ )
$v_{\sigma (i_0)}\,\neq \, v_{\sigma (j_0)}$ ,
$v_{\sigma (j_0)}\,\neq \, v_{i'_3}$ and
$v_{\sigma (i_0)}\,=\,v_{i'_3}$ .
If, in addition, we have
$v_{i'_3}\,=\,0$
, then we can give a parameter space for such
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
. So we assume that
$v_{i'_3}\,\neq \, 0$
.
(
$\alpha$
) Assume that the condition
$v_{\sigma (i_0)}\,=\,v_{\sigma (j_0)}$
holds. Recall that we are assuming that
$i'_2\,\neq \,\sigma (i_0),\,\sigma (j_0)$
and
$i'_3\,\neq \, \sigma (i_0),\,\sigma (j_0),\,i'_2$
. Furthermore, we are normalizing
$v$
so that
$v_{i'_2}\,=\,0$
. Consider the automorphisms
$\textbf {g}\,=\,(a_{ij})$
given by
$a_{ii}\,=\,1$
for
$i\,\neq \,\sigma (i_0)$
,
$a_{\sigma (i_0)\sigma (i_0)}\,=\,c\,\in \, k^{\times }$
,
$a_{\sigma (i_0)\sigma (j_0)}\,=\,1-c$
and
$a_{ij}\,=\,0$
for any
$i\,\neq \,j$
such that
$(i,\,j)\,\neq \,(\sigma (i_0),\,\sigma (j_0))$
. Then such automorphisms
$g$
preserve not only
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
but also
$v$
. Consider a normalized representative
$u\,=\,u_1e_1+\cdots +u_re_r$
of a generator of
$l^{(3)}_{r-3}/l^{(3)}_{r-2}$
such that
$u_{i'_2}\,=\,u_{i'_3}\,=\,0$
. Then
$u$
is sent to

by the above automorphism
$\textbf {g}$
. Replacing
$u$
by some
$\textbf {g}u$
, we may assume that one of the following holds:
$u_{\sigma (i_0)}\,=\,u_{\sigma (j_0)}$ ;
$u_{\sigma (i_0)}\,\neq \, u_{\sigma (j_0)}$ and
$u_{\sigma (j_0)}\,=\,0$ ;
$u_{\sigma (i_0)}\,\neq \, u_{\sigma (j_0)}$ ,
$u_{\sigma (j_0)}\,\neq \, 0$ and
$u_{\sigma (i_0)}\,=\,0$ .
So we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(
$\beta$
) Assume that
$v_{\sigma (i_0)}\,\neq \, v_{\sigma (j_0)}$
and
$v_{\sigma (j_0)}\,=\,v_{i'_3}$
. Recall that we are assuming that
$v_{i'_3}\,\neq \, 0$
. After applying an automorphism in
$B''$
, we may assume that
$v_{\sigma (i_0)}\,=\,\lambda _0 v_{i'_3}$
. So we can give a parameter space for such
$l^{(3)}_{r-2}$
of dimension at most
$r-4$
. Then we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(
$\gamma$
) Assume that
$v_{\sigma (i_0)}\,\neq \, v_{\sigma (j_0)}$
,
$v_{\sigma (j_0)}\,\neq \, v_{i'_3}$
and
$v_{\sigma (i_0)}\,=\,v_{i'_3}$
. Note that there are non-scalar automorphisms
$\textbf {g}\,=\,(a_{ij})\,\in \, B''$
preserving
$l^{(3)}_{r-2}$
. Recall that there is a
$c\,\in \,k^{\times }$
such that
$a_{ii}\,=\,c$
for
$i\,\neq \, \sigma (i_0)$
. Since
$\textbf {g}v\,\in \,\langle v,\,w\rangle$
, and the coefficient of
$e_{i'_2}$
in

is zero, we must have
$\textbf {g}v\,=\,cv$
. Comparing the coefficients of
$e_{\sigma (i_0)}$
, we have

Combining with the equality
$\displaystyle a_{\sigma (i_0)\sigma (i_0)}+\sum _{\genfrac {}{}{0pt}{}{j\gt i_0}{\sigma (j)\gt \sigma (i_0)}} a_{\sigma (i_0)\sigma (j)}\,=\,c$
, it follows that

So there is
$j_1\,\neq \, j_0$
for which
$j_1\,\gt \,i_0$
and
$\sigma (j_1)\,\gt \,\sigma (i_0)$
.
If
$v$
satisfies the condition
$v_{\sigma (j_0)}\,=\,v_{\sigma (j_1)}$
, then, taking into account the condition (
$\gamma$
), we can give a parameter space for such
$l^{(3)}_{r-2}$
of dimension at most
$r-2-2\,=\,r-4$
.
So we assume that
$v_{\sigma (j_0)}\,\neq \, v_{\sigma (j_1)}$
. For
$a\,\in \,k^{\times }$
, we can construct an automorphism
$\textbf {g}\,=\,(a'_{ij})\,\in \, B''$
satisfying the following conditions:
-
(1)
$a'_{ii}\,=\,1$ for
$i\,\neq \,\sigma (i_0)$ ;
-
(2)
$a'_{ij}\,=\,0$ for any
$i\,\neq \, j$ for which
$(i,\,j)\,\neq \,(\sigma (i_0),\,\sigma (j_0)),\,\, (\sigma (i_0),\,\sigma (j_1))$ ;
-
(3)
$a'_{\sigma (i_0)\sigma (i_0)}\,=\,a$ ,
$a'_{\sigma (i_0)\sigma (j_0)}\,=\,b\,\in \,k$ ,
$a'_{\sigma (i_0)\sigma (j_1)}\,=\,b'\,\in \,k$ ;
-
(4)
$a+b+b'\,=\,1$ and
$av_{\sigma (i_0)}+bv_{\sigma (j_0)}+b'v_{\sigma (j_1)}\,=\,v_{\sigma (i_0)}$ .
Indeed, if
$a\,\in \,k^{\times }$
is given, then
$b'$
is determined by the equality

and
$b$
is determined by the condition
$b\,=\,1-a-b'$
. Recall that we normalized
$v_{i'_2}\,=\,0$
and we are assuming that
$i'_3\,\neq \, i'_2,\,\sigma (i_0),\,\sigma (j_0)$
. Consider a representative
$u\,=\,u_1e_1+\cdots +u_re_r\in l^{(3)}_{r-3}$
of a generator of
$l^{(3)}_{r-3}/l^{(3)}_{r-2}$
satisfying the normalized condition
$u_{i'_2}\,=\,u_{i'_3}\,=\,0$
. Then the
$e_{i'_2}$
-coefficient and the
$e_{i'_3}$
-coefficient of

vanish, and the
$e_{\sigma (i_0)}$
-coefficient of
$\textbf {g}u$
is

If
$\displaystyle u_{\sigma (i_0)}-u_{\sigma (j_0)}\,\neq \, \frac {v_{\sigma (i_0)}-v_{\sigma (j_0)}} {v_{\sigma (j_0)}-v_{\sigma (j_1)}} (u_{\sigma (j_0)}-u_{\sigma (j_1)})$
, then we can normalize
$u$
so that
$u_{\sigma (i_0)}\,=\,u_{\sigma (j_0)}$
. So we can give a parameter space for such
$l^{(3)}_{r-3}$
whose dimension is at most
$r-4$
. If the equality
$\displaystyle u_{\sigma (i_0)}-u_{\sigma (j_0)}\,=\, \frac {v_{\sigma (i_0)}-v_{\sigma (j_0)}} {v_{\sigma (j_0)}-v_{\sigma (j_1)}} (u_{\sigma (j_0)}-u_{\sigma (j_1)})$
holds, then we can give a parameter space for such
$l^{(3)}_{r-3}$
whose dimension is at most
$r-4$
. Therefore, in all cases we can give a parameter space of
$(E,\,\boldsymbol{l})$
whose dimension is at most

Case B. Consider the case where
$E\,=\,{\mathcal O}_{\mathbb{P}^1}(a_1)^{\oplus r_1}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}$
with
$a_1\,\lt \,a_2\,\lt \,\cdots \,\lt \,a_m$
and
$l^{(i)}_{r-1}\,\subset \, {\mathcal O}_{\mathbb{P}^1}(a_2)^{\oplus r_2}\big |_{x_i}\oplus \cdots \oplus {\mathcal O}_{\mathbb{P}^1}(a_m)^{\oplus r_m}\big |_{x_i}$
for
$1\,\leqslant \, i\,\leqslant \,n$
.
As in the proof of Proposition 5.12, we choose a basis
$e^{(i)}_{j,1},\,\cdots ,\,e^{(i)}_{j,r_j}$
of
${\mathcal O}_{\mathbb{P}^1}(a_j)^{\oplus r_j}\big |_{t_i}$
for each
$i,\,j$
and we choose suitable generators
$v^{(i)}_{p^{(i)}(1),j^{(i)}(1)},\,\cdots ,\, v^{(i)}_{p^{(i)}(s),j^{(i)}(s)}$
of
$l^{(i)}_{r-s}$
. We may further assume that
$l^{(i)}_{r-s}$
is generated by
$e^{(i)}_{p^{(i)}(1),j^{(i)}(1)},\,\cdots ,\,e^{(i)}_{p^{(i)}(s),j^{(i)}(s)}$
for
$i\,=\,1,\, 2$
. Since diagonal automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{pp}_{jj}\,\in \,k^{\times }$
and
$a^{pq}_{jj'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
preserve
$l^{(1)}_*$
and
$l^{(2)}_*$
, we can normalize the generator

of
$l^{(3)}_{r-1}$
so that either
$w_{p,j}\,=\,1$
or
$w_{p,j}\,=\,0$
for any
$p,\,j$
. Note that
$w_{1,j}\,=\,0$
for
$1\,\leqslant \, j\,\leqslant \,r_1$
by the assumption of Case (B). There are the following two possible cases:
-
(i)
$r_1\,\geqslant \, 2$ ;
-
(ii)
$r_1\,=\,1$ .
(i) Assume that the condition
$r_1\,\geqslant \, 2$
holds. After adding an element of
$l^{(3)}_{r-1}$
, we can assume that a representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\cdots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
satisfies the condition
$v_{p^{(3)}(1),j^{(3)}(1)}\,=\,0$
. Consider the automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{1,1}_{j,j}\,=\,c_j\,\in \,k^{\times }$
for
$1\,\leqslant \, j\,\leqslant \, r_1$
,
$a^{p,p}_{j,j}\,=\,c'\,\in \,k^{\times }$
for
$p\,\geqslant \, 2$
and
$1\,\leqslant \, j\,\leqslant \, r_p$
,
$a^{p,q}_{j,j'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Since

we can assume that either
$v_{1,j}\,=\,1$
or
$v_{1,j}\,=\,0$
holds for any
$p,\,j$
. If
$r_1\,\gt \,2$
, then the parameter space for such generators of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
is of dimension at most
$r-4$
. If
$r_1\,=\,2$
, we may further assume that for some
$(p',\,j')\,\neq \,(p^{(3)}(1),\,j^{(3)}(1))$
with
$p'\,\geqslant \, 2$
the following holds: either
$v_{p',j'}\,=\,1$
or
$v_{p',j'}\,=\,0$
. So we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
. Adding the data
$l^{(3)}_{r-3},\,\cdots ,\,l^{(3)}_1$
, we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(ii) Assume that
$r_1\,=\,1$
. We again take a representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\cdots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
so that
$v_{p^{(3)}(1),j^{(3)}(1)}\,=\,0$
. We may assume that one of the following holds:
-
(
$\alpha$ )
$v_{1,1}\,=\,0$ ;
-
(
$\beta$ )
$v_{1,1}\,\neq \, 0$ and
$(p^{(1)}(1),\,j^{(1)}(1))\,\neq \,(p^{(2)}(1),j^{(2)}(1))$ ;
-
(
$\gamma$ )
$v_{1,1}\,\neq \, 0$ and
$(p^{(1)}(1),\,j^{(1)}(1))\,=\,(p^{(2)}(1),\,j^{(2)}(1))$ .
(
$\alpha$
) Assume that
$v_{1,1}\,=\,0$
holds. After adding an element of
$l^{(3)}_{r-1}$
, we can normalize
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\cdots +v_{m,r_m}e^{(3)}_{m,r_m}$
so that
$v_{p^{(3)}(1),j^{(3)}(1)}\,=\,0$
. Consider the automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{1,1}_{11}\,=\,c_1\,\in \,k^{\times }$
,
$a^{p,p}_{j,j}\,=\,c_2\,\in \,k^{\times }$
for
$p\,\geqslant \, 2$
and
$a^{p,q}_{j,j'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
. Then such automorphisms preserve not only
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
but also
$l^{(3)}_{r-2}$
. Choose
$(q_1,\,j_1)$
such that
$q_1\,\geqslant \, 2$
,
$v_{q_1,j_1}\,\neq \, 0$
and
$(q_1,\,j_1)\,\neq \,(p^{(3)}(1),\,j^{(3)}(1))$
. We can normalize a representative
$u\,=\,u_{1,1}e^{(3)}_{1,1}+\ldots +u_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-3}/l^{(3)}_{r-2}$
by adding an element of
$l^{(3)}_{r-2}$
such that
$u_{p^{(3)}(1),j^{(3)}(1)}\,=\,u_{q_1,j_1}\,=\,0$
. Take an index
$(q_2,\,j_2)$
other than
$(1,\,1)$
,
$(p^{(3)}(1),\,j^{(3)}(1))$
and
$(q_1,\,j_1)$
. Since

we may assume that one of the following holds:
$u_{1,1}\,=\,u_{q_2,j_2}\,\neq \, 0$ ;
$u_{1,1}\,=\,0$ ;
$u_{q_2,j_2}\,=\,0$ .
So we can give a parameter space for
$l^{(3)}_{r-2},\,l^{(3)}_{r-3}$
whose dimension is at most
$(r-3)+(r-4)$
. Adding the data
$l^{(3)}_{r-4},\,\cdots ,\,l^{(3)}_1$
, we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(
$\beta$
) Assume that the conditions
$v_{1,1}\,\neq \, 0$
and
$(p^{(1)}(1),\,j^{(1)}(1))\,\neq \,(p^{(2)}(1),\,j^{(2)}(1))$
hold. After replacing the indices
$i\,=\,1$
and
$2$
if necessary, we may assume that
$(p^{(3)}(1),\,j^{(3)}(1))\,\neq \, (p^{(1)}(1),\,j^{(1)}(1))$
. Consider the automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by:
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$ and
$a^{p,p}_{j,j}\,=\,c_2\,\in \,k^{\times }$ for
$p\,\geqslant \,2$ and
$1\,\leqslant \, j\,\leqslant \, r_p$ ;
$a^{p^{(1)}(1),1}_{j^{(1)}(1),1}\,\in \, \textrm { Hom}({\mathcal O}_{\mathbb{P}^1}(a_1),\,{\mathcal O}_{\mathbb{P}^1}(a_{p^{(1)}(1)}))$ satisfying
$a^{p^{(1)}(1),1}_{j^{(1)}(1),1}\big |_{x_2}\,=\,0$ ; and
$a^{p,q}_{j,j'}\,=\,0$ for any
$(p,\,j)\,\neq \,(q,\,j')$ satisfying
$((p,\,j), \, (q, \, j') )\,\neq \,((p^{(1)}(1),\,j^{(1)}(1)), \, (1,\, 1))$ .
Such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}\,=\,\big \langle v^{(3)}_{p^{(3)}(1),j^{(3)}(1)} \big \rangle$
. We can normalize the representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\ldots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
after adding an element of
$l^{(3)}_{r-1}$
such that
$v_{p^{(3)}(1),j^{(3)}(1)}\,=\,0$
. Choose
$(q_1,\,j_1)$
such that
$q_1\,\geqslant \, 2$
and
$(q_1,\,j_1)\,\neq \, (p^{(1)}(1),\,j^{(1)}(1)),\, (p^{(3)}(1),\,j^{(3)}(1))$
. For
$\textbf {g}\,=\,(a^{p,q}_{j,j'})\,\in \, B'$
, we have

So we can normalize
$v$
so that one of the following statements holds:
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_1,j_1}\,\neq \, 0$ ;
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,\neq \, 0$ and
$v_{q_1,j_1}\,=\,0$ .
Thus, we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
. Adding the data
$l^{(3)}_{r-2},\,\cdots ,\,l^{(3)}_1$
, we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

(
$\gamma$
) Assume that the following conditions hold:
$v_{1,1}\,\neq \, 0$
and
$(p^{(1)}(1),\,j^{(1)}(1))\,=\,(p^{(2)}(1),j^{(2)}(1))$
. By the definition,
$v^{(3)}_{p^{(3)}(1),j^{(3)}(1)} \,=\,w_{2,1}e^{(3)}_{2,1}+\ldots +w_{m,r_m}e^{(3)}_{m,r_m}$
is a fixed generator of
$l^{(3)}_{r-1}$
, and for any
$p,\,j$
, we have either
$w_{p,j}\,=\,1$
or
$w_{p,j}\,=\,0$
. We can choose
$(q_1,\,j_1)$
such that
$w_{q_1,\,j_1}\,=\,1$
. Take
$(q_2,\,j_2)$
such that
$q_2\,\geqslant \, 2$
and
$(q_2,\,j_2)\,\neq \,(q_1,\,j_1),\, (p^{(1)}(1),\,j^{(1)}(1))$
. After replacing
$(q_1,\,j_1)$
and
$(q_2,\,j_2)$
if necessary, we can assume that one of the following statements holds:
-
(
$\gamma$ -1)
$w_{q_2,j_2}\,=\,0$ ;
-
(
$\gamma$ -2)
$w_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ ;
-
(
$\gamma$ -3)
$w_{q_2,j_2}\,=\,w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$ and
$w_{p,j}\,=\,0$ for any
$(p,\,j)\,\neq \,(q_2,\, j_2),\, (p^{(1)}(1),\,j^{(1)}(1))$ ;
-
(
$\gamma$ -4)
$w_{q_2,\,j_2}\,=\,w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$ ,
$(q_1,\,j_1)\,\neq \,(q_2,\,j_2),\, (p^{(1)}(1),\,j^{(1)}(1))$ and
$q_2\,\gt \,p^{(1)}(1)$ ;
-
(
$\gamma$ -5)
$w_{q_2,j_2}\,=\,w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$ ,
$(q_1,\,j_1)\,\neq \,(q_2,\, j_2),\, (p^{(1)}(1),\,j^{(1)}(1))$ and
$q_2\,\leqslant \,p^{(1)}(1)$ .
(
$\gamma$
-1) Assume that the condition
$w_{q_2,j_2}\,=\,0$
holds. Consider the diagonal automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$
,
$a^{q_2,q_2}_{j_2,j_2}\,=\,c_2\,\in \,k^{\times }$
,
$a^{p,p}_{j,j}\,=\,c_3\,\in \,k^{\times }$
for
$(p,\,j)\,\neq \, (1,\, 1),\, (q_2,\, j_2)$
and
$a^{p,q}_{j,j'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
. Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Consider a representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\ldots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
with the normalizing condition
$v_{q_1,j_1}\,=\,0$
. Applying the above type of automorphisms to
$v$
, we have

So we can normalize
$v$
so that one of the following holds:
-
(a)
$v_{1,1}\,=\,v_{q_2,j_2}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,\neq \, 0$ ;
-
(b)
$v_{1,1}\,=\,v_{q_2,j_2}\,\neq \, 0$ and
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ ;
-
(c)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,\neq \, 0$ and
$v_{q_2,j_2}\,=\,0$ ;
-
(d)
$v_{q_2,j_2}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ .
So we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\gamma$
-2) Assume that the condition
$w_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$
holds. In this case, we have
$(q_1,\,j_1)\,\neq \,(p^{(1)}(1),\,j^{(1)}(1))$
, because
$w_{q_1,j_1}\,=\,1\,\neq \, 0$
. Consider the automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$
,
$a^{p^{(1)}(1),p^{(1)}(1)}_{j^{(1)}(1),j^{(1)}(1)}\,=\,c_2\,\in \,k^{\times }$
,
$a^{p,p}_{j,j}\,=\,c_3\,\in \,k^{\times }$
for
$(p,\,j)\,\neq \, (1,\, 1),\, (p^{(1)}(1),\,j^{(1)}(1))$
and
$a^{p,q}_{j,j'}\,=\,0$
for
$(p,\,j)\,\neq \,(q,\,j')$
. Then such automorphisms
$\textbf {g}$
preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Normalize the representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\ldots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
so that
$v_{q_1,j_1}\,=\,0$
. Applying the above type of automorphism
$\textbf {g}$
to
$v$
, we have

So we can assume that one of the following holds:
-
(a)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_2,j_2}\,\neq \, 0$ ;
-
(b)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,\neq \, 0$ and
$v_{q_2,j_2}\,=\,0$ ;
-
(c)
$v_{1,1}\,=\,v_{q_2,j_2}\,\neq \, 0$ and
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ ;
-
(d)
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_2,j_2}\,=\,0$ .
So we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\gamma$
-3) Assume that
$w_{q_2,j_2}\,=\,w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$
and
$w_{p,j}\,=\,0$
for any
$(p,\,j)$
other than
$(q_2,\,j_2),\,(p^{(1)}(1),\,j^{(1)}(1))$
. In this case, we have
$(q_1,\,j_1)\,=\,(p^{(1)}(1),\,j^{(1)}(1))$
because
$w_{q_1,j_1}\,=\,1\,\neq \, 0$
. Consider the diagonal automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$
,
$a^{q_2,q_2}_{k_2,j_2}\,=\,a^{p^{(1)}(1),p^{(1)}(1)}_{j^{(1)}(1),j^{(1)}(1)}\,=\,c_2\,\in \,k^{\times }$
,
$a^{p,p}_{j,j}\,=\,c_3\,\in \,k^{\times }$
for
$(p,\,j)\,\neq \,(1,\, 1),\, (q_2,\, j_2),\, (p^{(1)}(1),\, j^{(1)}(1))$
and
$a^{p,q}_{j,j'}\,=\,0$
for
$(p,\,j)\,\neq \, (q,\,j')$
. Such an automorphism
$\textbf {g}$
preserves
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. We again normalize the representative
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\ldots +v_{m,r_m}e^{(3)}_{m,r_m}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
such that
$v_{q_1,j_1}\,=\,0$
. Further, fix an index
$(q_3,\,j_3)$
other than
$(1,\,1),\, (q_1,\, j_1),\, (q_2,\, j_2)$
. Applying the above type of automorphisms to
$v$
, we have

So we may assume that one of the following holds:
$v_{1,1}\,=\,v_{q_2,j_2}\,=\,v_{q_3,j_3}\,\neq \,0$ ;
$v_{1,1}\,=\,v_{q_2,j_2}\,\neq \, 0$ and
$v_{q_3,j_3}\,=\,0$ ;
$v_{1,1}\,=\,v_{q_3,j_3}\,\neq \, 0$ and
$v_{q_2,j_2}\,=\,0$ ;
$v_{q_2,j_2}\,=\,v_{q_3,j_3}\,=\,0$ .
Then we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\gamma$
-4) Assume that the following three conditions hold:
$w_{q_2,j_2}\,=\, w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$
,
$(q_1,\,j_1)\,\neq \,(q_2,\,k_2),\, (p^{(1)}(1),\,j^{(1)}(1))$
and
$q_2\,\gt \,p^{(1)}(1)$
. In this case, we have
$a_1\,\leqslant \, a_{q_2}-2$
and we can take sections
$\alpha$
of
$\textrm { Hom}({\mathcal O}_{\mathbb{P}^1}(a_1),\,{\mathcal O}_{\mathbb{P}^1}(a_{q_2}))$
such that
$\alpha |_{x_1}\,=\,\alpha |_{x_2}\,=\,0$
but
$\alpha |_{x_3}$
is arbitrary. Recall that
$v\,=\,v_{1,1}e^{(3)}_{1,1}+\cdots +v_{m,r_m}e^{(3)}_{m,r_m}$
gives a representative of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
with
$v_{1,1}\,\neq \, 0$
. We impose the normalizing condition
$v_{q_1,j_1}\,=\,0$
after adding an element of
$l^{(3)}_{r-1}$
to
$v$
. Consider the automorphisms
$\textbf {g}\,=\,(a^{p,q}_{j,j'})$
of
$E$
given by:
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$ ,
$a^{p,p}_{j,j}\,=\,c_2\,\in \,k^{\times }$ for
$(p,\,j)\,\neq \,(1,\,1)$ ;
$a^{q_2,1}_{k_2,1}\,=\,\alpha \,\in \, \textrm { Hom}({\mathcal O}_{\mathbb{P}^1}(a_1),\, {\mathcal O}_{\mathbb{P}^1}(a_{q_2}))$ satisfying
$\alpha |_{x_1}\,=\,0$ ,
$\alpha |_{x_2}\,=\,0$ ; and
$a^{p,q}_{j,j'}\,=\,0$ for any
$(p,j,\,q,k)$ such that
$(p,\,j)\,\neq \,(q,\,j')$ and
$(p,\,j,\,q,\, j)\,\neq \, (q_2,\,k_2,\,1,\,1)$ .
Then such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Applying such an automorphism, the representative
$v$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
is sent to

So we may assume that one of the following two hold:
-
(1)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_2,j_2}\,\neq \, 0$ ;
-
(2)
$v_{1,1}\,=\,v_{q_2,j_2}\,\neq \, 0$ and
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ .
So we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
(
$\gamma$
-5) Assume that the following three conditions hold:
$w_{q_2,j_2}\,=\,w_{p^{(1)}(1),j^{(1)}(1)}\,=\,1$
,
$(q_1,\,j_1)\,\neq \,(q_2,\,j_2),\,(p^{(1)}(1),\,j^{(1)}(1))$
and
$q_2\,\leqslant \, p^{(1)}(1)$
. Consider the automorphisms
$\textbf {g}\,=\, (a^{p,q}_{j,j'})$
of
$E$
given by:
$a^{1,1}_{1,1}\,=\,c_1\,\in \,k^{\times }$ ,
$a^{p^{(1)}(1),p^{(1)}(1)}_{j^{(1)}(1),j^{(1)}(1)}\,=\,c_2\,\in \,k^{\times }$ ,
\begin{align*}a^{p,p}_{j,j}\,=\,c_3\,\in \,k^{\times }\end{align*}
$(p,\,j)\,\neq \,(1,\,1),\,(p^{(1)}(1),\,j^{(1)}(1))$ ;
$a^{p^{(1)}(1),q_2}_{j^{(1)}(1),j_2}\,=\,b\,\in \, \textrm { Hom}({\mathcal O}_{\mathbb{P}^1}(a_{q_2}),\, {\mathcal O}_{\mathbb{P}^1}(a_{p^{(1)}(1)}))$ such that
$c_2w_{p^{(1)}(1),j^{(1)}(1)}+b|_{x_3} w_{q_2,j_2}\,=\,c_3w_{p^{(1)}(1),j^{(1)}(1)}$ ; and
$a^{p,q}_{j,j'}\,=\,0$ for any
$(p,\,j,\,q,\,j)$ such that
$(p,\,j)\,\neq \, (q,\,j')$ and
\begin{align*}(p,\,j,\,q,\,j')\,\neq \, (p^{(1)}(1),\,j^{(1)}(1),\,q_2,\,j_2).\end{align*}
Note that we can always choose
$b\,\in \, H^0({\mathcal O}_{\mathbb{P}^1}(a_{p^{(1)}(1)}-a_{q_2}))$
satisfying the condition that
$b|_{x_3} w_{q_2,j_2}\,=\,(c_3-c_2)w_{p^{(1)}(1),j^{(1)}(1)}$
for any given
$c_2,\,c_3\,\in \,k^{\times }$
. Such automorphisms preserve
$l^{(1)}_*$
,
$l^{(2)}_*$
and
$l^{(3)}_{r-1}$
. Applying such an automorphism, the representative
$v\,\in \, l^{(3)}_{r-2}$
of a generator of
$l^{(3)}_{r-2}/l^{(3)}_{r-1}$
is sent to

So we can assume that one of the following holds:
-
(a)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_2,j_2}\,\neq \, 0$ ;
-
(b)
$v_{1,1}\,=\,v_{p^{(1)}(1),j^{(1)}(1)}\,\neq \, 0$ and
$v_{q_2,j_2}\,=\,0$ ;
-
(c)
$v_{1,1}\,=\,v_{q_2,j_2}\,\neq \, 0$ and
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,0$ ;
-
(d)
$v_{p^{(1)}(1),j^{(1)}(1)}\,=\,v_{q_2,j_2}\,=\,0$ .
Then we can give a parameter space for
$l^{(3)}_{r-2}$
whose dimension is at most
$r-4$
.
In all cases of B(ii)(
$\gamma$
), by adding the data
$l^{(3)}_{r-3},\,\cdots ,\,l^{(3)}_1$
to the parameter space of
$l^{(3)}_{r-2}$
, we can give a parameter space for
$(E,\,\boldsymbol{l})$
whose dimension is at most

This completes the proof.
Define the open subset
${\mathcal M}^{n_0\textrm { -reg}}_{{\rm PC}}(\boldsymbol{\nu },\nabla _L)^{\circ }$
of
$\mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L)$
,

which consists of
$\boldsymbol{\nu }$
-parabolic connections
$(E,\,\nabla ,\,\boldsymbol{l})$
with the determinant isomorphic to
$(L,\nabla _L)$
such that the underlying quasi-parabolic bundle
$(E,\,\boldsymbol{l})$
is simple.
Proposition 5.14. Let
$X$
be a smooth projective curve of genus
$g$
over an algebraically closed field
$k$
, and let
$L$
be a line bundle on
$X$
. Let
$r$
and
$n$
be positive integers such that
$r$
is not divisible by the characteristic of
$k$
and one of the following holds:
-
(1)
$n\,\geqslant \, 1$ and
$r\,\geqslant \, 2$ are arbitrary if
$g\,\geqslant \, 2$ ;
-
(2)
$n\,\geqslant \, 2$ ,
$r\geqslant 2$ and
$n+r\,\geqslant \, 5$ if
$g\,=\,1$ ;
-
(3)
$n\,\geqslant \,3$ ,
$r\geqslant 2$ and
$n+r\,\geqslant \,7$ if
$g\,=\,0$ .
Then the following holds:

Proof. By Propositions 5.10, 5.11, 5.12 and Proposition 5.13 there is a scheme
$Z$
of finite type over
$k$
and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$X\times Z$
over
$Z$
such that:
-
(i)
$\dim \textrm { End}((\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times z})\,\geqslant \, 2$ for any point
$z\,\in \, Z$ ;
-
(ii)
$\dim Z\leqslant (r^2-1)(g-1)+nr(r-1)/2-2$ ; and
-
(iii) each quasi-parabolic bundle in
$\left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm PC}}(L) \right | \setminus \left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm PC}}(L)^{\circ } \right |$ is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{z\}}$ for some point
$z\,\in \, Z$ .
We may assume that there is an isomorphism
$\varphi \,\colon \, \det (\widetilde {E})\,\xrightarrow {\,\,\sim \,\,\,}\, L\otimes {\mathcal L}$
for some line bundle
$\mathcal L$
on
$Z$
.
Let

be the relative Atiyah exact sequence, where
${\rm At}(\widetilde {E})$
is the Atiyah bundle for
$\widetilde E$
. Setting
${\rm At}_D(\widetilde {E})$
to be the pullback of
$T_{X\times Z/Z}(-D\times Z)$
by the surjection
${\rm At}(\widetilde {E})\,\longrightarrow \, T_{X\times Z/Z}$
in (5.16), we get a short exact sequence

By [Reference GrothendieckGrot1, Theorem 7.7.6], there exists a coherent sheaf
$\mathcal H$
on
$Z$
and a functorial isomorphism

for any morphism
$S\,\longrightarrow \, Z$
and any coherent sheaf
$\mathcal Q$
on
$S$
. Set
${\mathcal V}\,\,:=\,\,\textrm { Spec} \left ( {\rm Sym}^*( {\mathcal H} )\right )$
. Then there is a universal section
$\widetilde {\Psi }\,\colon \, T_{X\times {\mathcal V}/{\mathcal V}}(-D\times {\mathcal V}) \,\longrightarrow \,{\rm At}_D(\widetilde {E})$
. Note that the composition of maps
${\rm symb}\circ \widetilde {\Psi }$
defines a global section of
${\mathcal O}_{X\times {\mathcal V}}$
, which is a section of
${\mathcal O}_{\mathcal V}$
. Let
${\mathcal V}'$
be the closed subscheme of
$\mathcal V$
defined by the condition
${\rm symb}_1\circ \widetilde {\Psi }\,=\,1$
. Then the restriction
$\widetilde {\Psi }|_{{\mathcal V}'}$
defines a universal relative connection

Let
$B$
be the maximal closed subscheme of
$\mathcal V'$
such that
$\big ( {\sf res}_{x_i\times {\mathcal V'}}(\widetilde {\nabla }) -\nu ^{(i)}_j{\rm id}\big ) (\widetilde {l}^{(i)}_j)_{\mathcal V'} \,\subset \, (\widetilde {l}^{(i)}_{j+1})_{\mathcal V'}$
for any
$i,\,j$
and
$(\varphi \otimes {\rm id})\circ \widetilde {\nabla }\circ \varphi ^{-1} \,=\,\nabla _L\otimes {\rm id}_{\mathcal L}$
. Set

There is a canonically induced morphism

whose fiber over a point
$z$
is an affine space isomorphic to
$H^0\big (X,\, \widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},1} |_{X\times \{z\}}\big )$
. Set

Then there is a canonically induced morphism

By the construction, the complement
$\mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L) \setminus \mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L)^{\circ }$
coincides with the image
$q(B^{\circ })$
. So it suffices to show that for every irreducible component
$B'$
of
$B^{\circ }$
, the closure
$\overline {q(B')}$
has dimension at most
$2(r^2-1)(g-1)+r(r-1)n-2$
.
For each point
$b\,\in \,B'$
, consider the group
${\rm Aut}((\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\det \widetilde {E})|_{X\times \{b\}})$
of automorphisms of
$\widetilde {E}|_{X\times \{b\}}$
preserving
$\widetilde {\boldsymbol{l}}_{D\times \{b\}}$
and
$\det \widetilde {E}|_{X\times \{b\}}$
. Then the tangent space of
${\textrm { Aut}}((\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\det \widetilde {E})|_{X\times \{b\}})$
is isomorphic to
$H^0(X,\, \widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},0} |_{X\times \{b\}})$
. For a point
$b$
of
$B'$
, there is the orbit map

whose differential

is injective because
$(\widetilde {E},\,\widetilde {\nabla },\,\widetilde {\boldsymbol{l}})|_{X\times \{b\}}$
is simple. Since the fiber
$q^{-1}(x)$
over a point
$x$
of

contains an orbit for the action of
${\rm Aut}((\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\det \widetilde {E})|_{X\times \{b\}})$
, we have

Note that we have
$\big (\widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},0}\big )^{\vee } \otimes K_X \,\cong \, \widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},1}$
, and

by the Riemann–Roch theorem. If we choose
$x$
to be a generic point of
$q(B')$
, then we have

Since
$q(B^{\circ })=\mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L) \setminus \mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L)^{\circ }$
is a union of the images
$q(B')$
, the proof is completed.
Define the open subset
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }$
of
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
by

which consists of
$\boldsymbol{\mu }$
-parabolic Higgs bundles
$(E,\,\Phi ,\,\boldsymbol{l})$
with the determinant isomorphic to
$(L,\Phi _L)$
such that the underlying quasi-parabolic bundle
$(E,\,\boldsymbol{l})$
is simple.
The proof of the following proposition uses an argument similar to one in the proofs of Proposition 5.14.
Proposition 5.15. Let
$X$
be a smooth projective curve of genus
$g$
over an algebraically closed field
$k$
, and let
$L$
be a line bundle on
$X$
with a homomorphism
$\Phi _L \,\colon \, L\,\longrightarrow \, L\otimes K_X(D)$
. Take positive integers
$r,n$
and a tuple
$\boldsymbol{\mu }=(\mu ^{(i)}_j)^{1\leqslant i\leqslant n}_{0\leqslant j\leqslant r-1}\in \,k^{nr}$
such that
${\sf res}_{x_i}(\Phi _L)\,=\,\sum _{j=0}^{r-1}\mu ^{(i)}_j$
for any
$i$
. Assume that
$r$
is not divisible by the characteristic of
$k$
and one of the following holds:
-
(a)
$n\,\geqslant \, 1$ and
$r\,\geqslant \, 2$ are arbitrary if
$g\,\geqslant \, 2$ ;
-
(b)
$n\,\geqslant \, 2$ ,
$r\geqslant 2$ and
$n+r\,\geqslant \, 5$ if
$g\,=\,1$ ;
-
(c)
$n\,\geqslant \,3$ ,
$r\geqslant 2$ and
$n+r\,\geqslant \,7$ if
$g\,=\,0$ .
Then
${\rm codim}_{\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)} \left ( \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L) \setminus \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }\right ) \,\,\geqslant \,\, 2$
.
Proof. By Propositions 5.10, 5.11, 5.12, 5.13, there is a scheme
$Z$
of finite type over
$\textrm { Spec}\, k$
and a flat family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
of quasi-parabolic bundles on
$X\times Z$
over
$Z$
such that
-
(i)
$\dim Z\,\leqslant \, (r^2-1)(g-1)+nr(r-1)/2-2$ ;
-
(ii)
$\dim \textrm { End}((\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times z})\,\geqslant \, 2$ for all
$z\,\in \, Z$ ; and
-
(iii) each quasi-parabolic bundle in the complement
$\left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm par}}(L) \right | \setminus \left | {\mathcal N}^{n_0{\rm -reg}}_{{\rm par}}(L)^{\circ } \right |$ is isomorphic to
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{z\}}$ for some
$z\,\in \, Z$ .
Define

By [Reference GrothendieckGrot1, Theorem 7.7.6], there is a coherent sheaf
$\mathcal H$
on
$Z$
together with a functorial isomorphism

for any Noetherian scheme
$S$
over
$Z$
and any coherent sheaf
$Q$
on
$S$
. For
$\mathbb{V}({\mathcal H})\,\,:=\,\, \textrm {Spec} \big ( {\rm Sym}^*({\mathcal H})\big )$
, there is a universal family of Higgs fields
$\widetilde {\Phi }\,\in \, H^0(X\times S,\,\widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},0} \otimes K_X(D)\otimes _{{\mathcal O}_Z} {\mathcal O}_{\mathbb{V}({\mathcal H})})$
on
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})\otimes {\mathcal O}_{\mathbb{V}({\mathcal H})}$
. We may assume that
$\det (\widetilde {E})\,\cong \, L\otimes {\mathcal P}$
for some line bundle
$\mathcal P$
on
$Z$
. Let
$B$
be the maximal locally closed subscheme of
$\mathbb{V}({\mathcal H})$
such that the composition of the homomorphisms

coincides with
$\nabla _L\otimes {\mathcal P}_B$
and
$({\sf res}_{x_i\times Z} (\widetilde {\Phi }) - \mu ^{(i)}_\ell ) (\widetilde {l}^{(i)}_\ell ) \,\subset \, \widetilde {l}^{(i)}_{\ell+1}$
for any
$i,\,\ell$
and also
$(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\widetilde {\Phi })|_{X\times b}$
is simple for any
$b\,\in \, B$
. Then the family
$(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\widetilde {\Phi })_{B}$
defines a morphism

whose image coincides with
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L) \setminus \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }$
. Note that the fibers of the morphism in (5.18) contain orbits of the action by the automorphism group of
$(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\det (\widetilde {E}))_z$
whose dimension is that of
$H^0(X,\,\widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},0}|_{X\times z})$
. So we have

Since
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L) \setminus \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }$
coincides with the image of the morphism in (5.18), the proof is complete.
As a corollary of the above theorem, we can also get a result by Boden and Yokogawa [Reference Boden and YokogawaBoYo, Theorem 4.2(c)].
Corollary 5.16. Under the same assumption as in Propositions 5.14 and 5.15
, the moduli spaces
$\mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L)$
and
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
are irreducible.
Proof. We only prove the irreducibility for
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
as the proof is same for
$\mathcal{M}_{{\rm PC}}^{n_0{\rm -reg}}(\boldsymbol{\nu },\nabla _L)$
. The open subspace
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }$
is isomorphic to an affine space bundle over the moduli space
${\mathcal N}_{\textrm { par}}^{n_0{\rm -reg}}(L)$
of
$n_0$
-regular simple quasi-parabolic bundles with the determinant
$L$
. Since
${\mathcal N}_{\textrm { par}}^{n_0{\rm -reg}}(L)$
is irreducible, it follows that
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }$
is also irreducible. Recall that the moduli space
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
is smooth of equi-dimension by Proposition 5.7. So
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
is connected and thus irreducible, because
$\dim \left ( \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L) \setminus \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)^{\circ }\right ) \,\lt \,\dim \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{\mu },\,\Phi _L)$
by Proposition 5.15.
Remark 5.17. The proof of Corollary 5.16 is in fact valid under a weaker assumption than that of Theorem 5.15. Indeed, it is valid under the same assumption as that of [Reference InabaIna, Theorem 2.2].
5.3 The moduli space is not affine
We use the notation of § 5.1. In this subsection,
$k$
is assumed to be an algebraically closed field of arbitrary characteristic unless otherwise noted.
Let
$X$
be a smooth projective curve over
$k$
of genus
$g$
. Fix a line bundle
$L$
of degree
$d$
on
$X$
equipped with a logarithmic connection
$\nabla _L\,\colon \, L \,\longrightarrow \, L\otimes K_X(D)$
, and also fix a string of local exponents
$\boldsymbol{\nu }\,=\, (\nu ^{(i)}_j)\,\in \, k^{nr}$
such that
${\sf res}_{x_i}(\nabla _L)\,=\,\sum _{j=0}^{r-1}\nu ^{(i)}_j$
for any
$i$
. We assume the following:

Under the assumption in (5.19), any
$\boldsymbol{\nu }$
-parabolic connection is irreducible, and hence it is
$\boldsymbol{\alpha }$
-stable for any parabolic weight
$\boldsymbol{\alpha }$
. So we have
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\,\nabla _L) \,=\,\mathcal{M}_{{\rm PC}}(\boldsymbol{\nu },\,\nabla _L)$
. In this subsection we will show that the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\,\nabla _L)$
is not affine. This will be done by comparing the transcendence degree of the ring of global algebraic functions on the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
of parabolic connections with the transcendence degree of the ring of global algebraic functions on the moduli space of parabolic Higgs bundles.
Consider the moduli space

of
$\boldsymbol{\alpha }$
-stable parabolic Higgs bundles. Setting

we have a canonical morphism

whose fiber over any
$\boldsymbol{\mu }\,\in \, \Lambda _{\textrm { Higgs}}$
is the moduli space
${\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu })$
of
$\boldsymbol{\alpha }$
-stable
$\boldsymbol{\mu }$
-parabolic Higgs bundles. For a parabolic Higgs bundle
$(E,\,\Phi ,\,\boldsymbol{l})\,\in \, {\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(d)$
, consider the homomorphism

where
$T$
is an indeterminate. We can write

with
$s_j\,\in \, H^0(X,\,K_X^{\otimes j}(jD))$
. Note that
$s_1\,=\,-{\textrm { Tr}}(\Phi )$
. Set

Using the above constructed
$(s_1,\,\cdots ,\,s_r)$
, we get a morphism

which is called the Hitchin map. A remarkable property of the Hitchin map is that it is proper, which was proved by Hitchin, Simpson and Nitsure. We use the parabolic version of it, which was proved by Yokogawa.
Theorem 5.18 [Reference HitchinHi, Reference SimpsonSim3, Reference NitsureNit, Reference YokogawaYo].Under the assumption that
$\boldsymbol{\alpha }$
-semistability implies
$\boldsymbol{\alpha }$
-stability, the Hitchin map
$H\,\,\colon \, \,{\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(d)\,\, \longrightarrow \,\, W$
in (5.20) is a proper morphism.
Set

Using the correspondence
$(s_\ell )_{1\leqslant \ell \leqslant r}\, \longmapsto \, ({\sf res}_{x_i}(s_\ell ))^{1\leqslant i\leqslant n}_{1\leqslant \ell \leqslant r}$
, we define a morphism

which is a linear surjection under any of the following conditions:
-
(i)
$n\,\geqslant \, 1$ when
$g\,\geqslant \, 2$ ;
-
(ii)
$n\,\geqslant \, 2$ when
$g\,=\,1$ ;
-
(iii)
$n\,\geqslant \, 3$ when
$g\,=\,0$ .
There is also a morphism

that associates the coefficients of
$\prod _{j=0}^{r-1}(t-\mu ^{(i)}_j)$
. Then the Hitchin map induces a morphism

which is proper by Theorem5.18.
Fix a line bundle
$L$
on
$X$
of degree
$d$
, and consider the closed subvariety

of
${\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(d)$
. Then the restriction of the map in (5.21)

is also a proper morphism.
Generic fibers of the Hitchin map were investigated by Logares and Martens in [Reference Logares and MartensLaMa, Proposition 2.2]. The following result is likely to be well known to the experts. We give a proof of it using the arguments given by Alfaya and Gómez in [Reference Alfaya and GómezAlGo, Lemma 3.2].
Corollary 5.19. Assume that
$\boldsymbol{\alpha }$
-semistability implies
$\boldsymbol{\alpha }$
-stability. Also, assume that one of the following statements holds:
-
(i)
$n\,\geqslant \, 1$ if
$g\,\geqslant \, 2$ ;
-
(ii)
$n\,\geqslant \, 2$ if
$g\,=\,1$ ;
-
(iii)
$n\,\geqslant \, 3$ if
$g\,=\,0$ .
Then the morphism
${\mathcal M}^{\boldsymbol{\alpha }}_{\textrm {Higgs}}(L) \ \longrightarrow \ W\times _{ A_{\textrm {Higgs}} } \Lambda _{\textrm { Higgs}}$
in (5.22) is surjective.
Proof. It suffices to prove that the morphism in (5.22) is dominant, because it is proper. Take any
$(s\,=\,(s_\ell ),\,\boldsymbol{\mu })\,\in \, W\times _{ A_{\textrm { Higgs}} } \Lambda _{\textrm { Higgs}}$
. Consider the corresponding spectral curve
$X_s\, \subset \, \mathbb{P}({\mathcal O}_X\oplus K_X(D))$
which is defined by the equation

where
$y$
is the section of
${\mathcal O}_{\mathbb{P}({\mathcal O}_X\oplus K_X(D))}(1)$
corresponding to the inclusion map
${\mathcal O}_X\,\hookrightarrow \, {\mathcal O}_X\oplus K_X(D)$
. Take a section
$\tau \,\in \, H^0(X,\, K_X^{\otimes r}(rD))$
which has at most simple zeroes; since
$K_X^{\otimes r}(rD)$
is very ample by the assumption in the corollary, such a section exists. Then the spectral curve
$y^r-\tau \,=\,0$
has no singular points.
Since the smoothness is an open condition, there is an open subset
$U\,\subset \, W\times _{A_{\textrm { Higgs}}}\Lambda _{\textrm { Higgs}}$
such that the spectral curve
$X_s$
is smooth for every
$s\,\in \,U$
. Take a line bundle
$\mathcal L$
on
$X_s$
such that the locally free sheaf
$E\,\,:=\,\,\pi _*({\mathcal L})$
has its determinant
$\det (E)$
isomorphic to
$L$
, where
$\pi \,\colon \, X_s\, \longrightarrow \, X$
is the natural projection. By the Beauville–Narasimhan–Ramanan correspondence [Reference Beauville, Narasimhan and RamananBNR, Proposition 3.6], there is a Higgs field
$\Phi \,\colon \, E \,\longrightarrow \, E\otimes K_X(D)$
induced by the action of
$y$
on
$\mathcal L$
. Shrinking
$U$
if necessary, we may further assume that
$\mu ^{(i)}_0,\,\cdots ,\,\mu ^{(i)}_{r-1}$
are mutually distinct for any fixed
$i$
. Then we can associate a unique parabolic structure
$l$
on
$E$
compatible with
$\Phi$
. Since
$(E,\,\Phi ,\,\boldsymbol{l})$
is irreducible by its construction, it is evidently
$\boldsymbol{\alpha }$
-stable. So we have
$(E,\,\Phi ,\,\boldsymbol{l})\,\in \, {\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(L)$
, which is sent to
$(s,\,\boldsymbol{\mu })$
under the morphism in (5.22). Thus, the morphism in (5.22) is dominant because its image contains the dense open subset
$U$
of
$W\times _{ A_{\textrm { Higgs}} } \Lambda _{\textrm { Higgs}}$
.
As a consequence of Theorem5.18 and Corollary 5.19, we can determine the transcendence degree of the ring of global algebraic functions on the moduli space of parabolic Higgs bundles.
Corollary 5.20. Let
$L$
be a line bundle on
$X$
with a Higgs field
$\Phi _L\,\colon \, L \,\longrightarrow \, L\otimes K_X(D)$
. Take
$\boldsymbol{\mu }\,=\,(\mu ^{(i)}_j)\,\in \,\Lambda _{\textrm { Higgs}}$
satisfying the condition
${\sf res}_{x_i}(\Phi _L)\,=\,\sum _{j=0}^{r-1} \mu ^{(i)}_j$
for all
$i$
. Then, under the same assumption as in Theorem 5.15, the transcendence degree of the ring of global algebraic functions on the moduli space of parabolic Higgs bundles is given by the following:

Proof. The closed subvariety

of
$W\times _{A_{\textrm { Higgs}}} \Lambda _{\textrm { Higgs}}$
is isomorphic to an affine space. Its inverse image
${\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(L) \times _{ W\times _{ A_{\textrm { Higgs}} } \Lambda _{\textrm { Higgs}} } Y$
for the morphism in (5.22) is nothing but the moduli space
${\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu }, \Phi _L)$
of
$\boldsymbol{\alpha }$
-stable
$\boldsymbol{\mu }$
-parabolic Higgs bundles with determinant
$(L,\,\Phi _L)$
. By Corollary 5.19, the base change

is also a proper and surjective morphism. So the ring homomorphism
${\mathcal O}_Y\,\longrightarrow \, H'_*{\mathcal O}_{{\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu },\Phi _L)}$
is injective, and
$H'_*{\mathcal O}_{{\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu },\Phi _L)}$
is a finite algebra over
${\mathcal O}_Y$
. Therefore,

is a finite algebra over
$\Gamma (Y,\,{\mathcal O}_Y)$
whose Krull dimension is


Since
$\Gamma ({\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu }, \Phi _L), \, {\mathcal O}_{{\mathcal M}^{\boldsymbol{\alpha }}_{\textrm { Higgs}}(\boldsymbol{\mu },\Phi _L)})$
is a finitely generated algebra over
$k$
, its transcendence degree over
$k$
coincides with its Krull dimension.
Proposition 5.21. There is a projective flat morphism

and an
$\mathbb{A}^1$
-relative very ample divisor
$Y\,\subset \, \overline {\mathcal M'}$
such that the complement
${\mathcal M'}\,\,:=\,\,\overline {\mathcal M'}\setminus Y$
satisfies the following:

Proof. Let
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
be the moduli space of simple
$n_0$
-regular quasi-parabolic bundles
$(E,\,\boldsymbol{l})$
with
$\det E\,\cong \, L$
. Let
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
be the universal family over
$X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
. As in the proof of Proposition 3.5, we can construct the relative Atiyah bundle
${\rm At}_D(\widetilde {E})$
, which fits in the exact sequence

Recall the construction of the homomorphism (3.4) in the proof of Proposition 3.5, which defines a surjection

Let
${\rm At}_D(\widetilde {E},\,\widetilde {\boldsymbol{l}}) \,\subset \, {\rm At}_D(\widetilde {E})$
be the pullback of the subsheaf

by the above surjection.
Since
$\det (\widetilde {E})\,\cong \, L\otimes {\mathcal P}$
for a line bundle
$\mathcal P$
on
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
, it follows that
${\rm At}_D(\det (\widetilde {E}))\,\cong \, {\rm At}_D(L)\otimes {\mathcal O}_{X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}$
. There is an exact sequence

which admits a section
$T_X(-D)\otimes {\mathcal O}_{X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)} \,\longrightarrow \, {\rm At}_D(L)\otimes {\mathcal O}_{X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}$
induced by
$\nabla _L$
. So its image determines a subbundle of
${\rm At}_D(L)\otimes {\mathcal O}_{X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}$
. Let
${\rm At}_D(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\nabla _L)$
be the pullback of this subbundle by the homomorphism

defined by
$D\,\longmapsto \, D\wedge {\rm Id}\wedge \cdots \wedge {\rm Id}+\cdots + {\rm Id}\wedge \cdots \wedge {\rm Id}\wedge D$
. If we set

then the subbundle
${\rm At}_D(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\nabla _L) \,\subset \, {\rm At}_D(\widetilde {E},\,\widetilde {\boldsymbol{l}})$
fits in the exact sequence

If we set

then, by Serre duality,

which in fact becomes zero because the underlying quasi-parabolic bundle
$(\widetilde {E},\,\widetilde {\boldsymbol{l}})|_{X\times \{p\}}$
is simple. Let

be the projection. Then we have
$R^1\pi _* \left (\widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},0} \otimes K_X(D) \right )\,=\,0$
, and get a short exact sequence

Note that
$\pi _*\left ( {\mathcal O}_{X\times \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}\right ) \,\cong \,{\mathcal O}_{\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}$
. Consider the homomorphism

on
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)\times \textrm { Spec}\, k[t]$
defined by

for
$u\,\in \,\pi _*\left ({\rm At}_D(\widetilde {E},\,\widetilde {\boldsymbol{l}},\,\nabla _L)\otimes K_X(D)\right ) \otimes k[t]$
and
$f\,\in \, {\mathcal O}_{\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)}\otimes k[t]$
. Then
$\ker \Psi _t$
is a locally free sheaf on
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)\times \textrm { Spec}\, k[t]$
, and we have

Define the projective bundle

over
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)\times \textrm {Spec}\, k[t]$
. There is a tautological line-subbundle

Consider the sections

Let
$I$
be the ideal sheaf of the graded algebra
${\rm Sym} \left ( (\ker \Psi _t)^{\vee } \right )$
over
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
, which is generated by
$\left \{ \widetilde {\nu }^{(i)}_j-\nu ^{(i)}_j ty \, \middle | \, 1\leqslant i\leqslant n , 0\leqslant j\leqslant r-1 \right \}$
. Set

Then there is a canonical structure morphism

Let
$Y\,\subset \,\overline {\mathcal M'}$
be the effective divisor defined by the equation
$y\,=\,0$
. Setting
${\mathcal M'}\,\,:=\,\,\overline {\mathcal M'}\setminus Y$
, we see by the construction that
${\mathcal M'}_h\,\cong \, \mathcal{M}_{{\rm PC}}^{n_0\textrm { -reg}}(\boldsymbol{\nu },\nabla _L)^{\circ }$
for
$h\,\neq \, 0$
and
${\mathcal M'}_0\,\cong \, \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ }$
.
Theorem 5.22. Let
$X$
be a smooth projective curve of genus
$g$
over an algebraically closed field
$k$
of arbitrary characteristic, and let
$D\,=\,\sum _{i=1}^n x_i$
be a reduced effective divisor on
$X$
. Fix a line bundle
$L$
over
$X$
with a connection
$\nabla _L \,\colon \, L\,\longrightarrow \, L\otimes K_X(D)$
. Take positive integers
$r$
and
$d$
such that
$r\,\geqslant \, 2$
,
$n\,\geqslant \, 1$
and
$r$
is not divisible by the characteristic of
$k$
. Assume that one of the following statements holds:
-
(a)
$n\,\geqslant \, 1$ and
$r\,\geqslant \, 2$ are arbitrary if
$g\,\geqslant \,2$ ;
-
(b)
$n\,\geqslant \, 2$ and
$n+r\,\geqslant \, 5$ if
$g\,=\,1$ ;
-
(c)
$n\,\geqslant \, 3$ and
$n+r\,\geqslant \, 7$ if
$g\,=\,0$ .
Also, assume that the exponent
$\boldsymbol{\nu }\,=\,(\nu ^{(i)}_j)^{1\leqslant i\leqslant n}_{0\leqslant j\leqslant r-1}$
satisfies the condition
${\sf res}_{x_i}(\nabla _L)\,=\,\sum _{j=0}^{r-1}\nu ^{(i)}_j$
for any
$i$
, and, furthermore,
$ \sum _{i=1}^n\sum _{\ell=1}^s \nu ^{(i)}_{j^{(i)}_\ell }$
is not contained in the image of
$\mathbb{Z}$
in
$k$
for any integer
$1\,\leqslant \, s\,\lt \, r$
and any choice of
$s$
elements
$\{j^{(i)}_1,\,\cdots ,\,j^{(i)}_s\}$
in
$\{1,\,\ldots ,\,r\}$
for each
$1\,\leqslant \, i\,\leqslant \, n$
. Then, the transcendence degree of the global algebraic functions on the moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu })$
of
$\boldsymbol{\alpha }$
-stable
$\boldsymbol{\nu }$
-parabolic connections satisfies the inequality

Proof. Note that

by Proposition 5.15. Since we can extend the Hitchin map in (5.20) to a morphism
$ \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0) \,\longrightarrow \, W$
, we have the inclusion maps

where we take
$\boldsymbol{\alpha '}$
generic so that
$\boldsymbol{\alpha '}$
-semistability implies
$\boldsymbol{\alpha '}$
-stability. Then, using Corollary 5.20, it follows that
$ \Gamma \left ( \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ },\, {\mathcal O}_{ \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ }}\right ) \,=\, \Gamma \left ( \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0) ,\, {\mathcal O}_{ \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0) } \right )$
is a finitely generated
$k$
-algebra whose Krull dimension is
$r^2(g-1)-g+1+nr(r-1)/2$
.
We use the notation in the proof of Proposition 5.21. Note that
$\mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ }$
is isomorphic to the cotangent bundle over
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
. So we have
$ \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ } \,\cong \, {\rm Spec} \Big ( {\rm Sym}^* \Big ( \pi _* \big ( \widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},1}\big )^{\vee }\Big ) \Big )$
, which implies that

Note that there is a short exact sequence

We can see that the above homomorphism
$q$
determines the equalities
$\big ( \widetilde {\nu }^{(i)}_j-\nu ^{(i)}_jty \big )|_{t=0}$
on the fiber
$\mathbb{P}(\ker \Psi _t^{\vee }\otimes \mathbb{C}[t]/(t))$
over
$t\,=\,0$
. Taking the dual of the above exact sequence,

where
$T$
is a variable corresponding to the second component of
$\ker \Psi _t\otimes k[t]/(t) \,=\,\pi _*\big ( \widetilde {\mathcal D}^{{\rm par}}_{\mathfrak{sl},1} \big )^{\vee } \oplus {\mathcal O}_{{\mathcal N}^{n_0{\rm -reg}}_{{\rm par}}(L)}$
. So the ring of global sections of this sheaves of algebras over
$\mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L)$
becomes a polynomial ring

over
$\Gamma \left ( \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ } ,\, {\mathcal O}_{ \mathcal{M}^{n_0{\rm -reg}}_{{\rm Higgs}}(\boldsymbol{0},\,0)^{\circ } } \right )$
. In particular,
$ \dim (({\rm Sym}^m (\ker \Phi _t^{\vee })/I_m)\otimes k[t]/(t))$
becomes a polynomial in
$m$
of degree

Let
$\left ({\rm Sym}\left ( \ker \Psi _t^{\vee } \right )/I \right )_{(y)}$
be the subalgebra of the localized graded algebra
$\left ({\rm Sym}\left ( \ker \Psi _t^{\vee } \right )/I \right )_y$
consisting of homogeneous elements of degree zero. Then we have

for
$h\,\neq \, 0$
. By the assumption in (5.19) on the choice of the exponent
$\boldsymbol{\nu }$
, and by Proposition 5.14, we have

By Lemma A.1, which is proved later in § 6, the function

is upper semi-continuous in
$h$
. So we have

for
$h\,\neq \, 0$
.
Let
$d$
be the transcendence degree of
$\Gamma ( \mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L),\, {\mathcal O}_{\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)} )$
over
$k$
. Then we have

Take homogeneous elements
$x_1,\,\cdots ,\,x_d$
of

such that
$\{x_1,\,\cdots ,\,x_d,\,y\}$
is a transcendence basis of
$\Gamma \left ( \mathcal{N}^{n_0{\rm -reg}}_{{\rm par}}(L), \, \left ({\rm Sym}\left ( \ker \Psi _t \right )/I\right ) \big |_{t=h} \right )$
over
$k$
. Let
$S$
be the graded subalgebra of

generated by
$x_1,\,\cdots ,x_d,\,y$
. Then

Since
$S_m$
is a polynomial in
$m$
of degree
$d$
for
$m\,\gg \, 0$
, it follows that
$d\,\leqslant \, r^2(g-1)-g+1+nr(r-1)/2$
.
Remark 5.23. A statement similar to Theorem 5.22 can be considered for connections without pole. When
$X$
is a curve over the field of complex numbers whose genus is greater than
$2$
, then there are only constant global algebraic functions on the de Rham moduli space of connections without pole by [Reference Biswas and RaghavendraBiRa, Corollary 4.4]. So the inequality similar to Theorem 5.22 becomes strict in that case. On the other hand, if
$X$
is defined over the base field of positive characteristic, it is proved in [Reference GroechenigGroe, Theorem 1.1] that the Hitchin map for the de Rham moduli space connections without pole is étale locally equivalent to that on the Dolbeault moduli space. So, the ring of global algebraic functions on the de Rham moduli space has the same transcendence degree as that of the ring of global algebraic functions on the Dolbeault moduli space in that case. The Hitchin map for the logarithmic de Rham moduli space over the base field of positive characteristic is introduced in [Reference de Cataldo, Herrero and ZhangdCHZ].
The following is an immediate consequence of Theorem5.22.
Corollary 5.24. The moduli space
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
of
$\boldsymbol{\alpha }$
-stable
$\boldsymbol{\nu }$
-parabolic connections is not affine.
From now on, consider the case of
$k\,=\,\mathbb{C}$
.
Since the fundamental group
$\pi _1(X\setminus D,\,*)$
is finitely presented, the space of representations

can be realized as an affine variety. Take generators
$\alpha _1,\,\beta _1,\,\cdots ,\,\alpha _g,\,\beta _g$
of the fundamental group
$\pi _1(C,\, *)$
, and choose a loop
$\gamma _i$
around each
$x_i$
with respect to the base point
$*$
. Then the fundamental group
$\pi _1(X\setminus D,\,*)$
is generated by
$\alpha _1,\,\beta _1,\,\cdots ,\,\alpha _g,\,\beta _g,\,\gamma _1,\,\cdots ,\,\gamma _n$
with the single relation
$[\alpha _1,\,\beta _1]\cdots [\alpha _g,\,\beta _g]\gamma _1\cdots \gamma _n\,=\,1$
. The space of representations of
$\pi _1(X\setminus D,\,*)$
can be realized as the affine variety

Note that the connection
$\nabla _L$
on the line bundle
$L$
induces a one-dimensional representation
$\rho _{\nabla _L}$
of
$\pi _1(X\setminus D,\,*)$
. Define a tuple
$(b^{(i)}_j)$
by
$b^{(i)}_j\,\,:=\,\,e^{-2\pi \sqrt {-1}\nu ^{(i)}_j}$
, and consider the closed subvariety

of
$\textrm { Hom}(\pi _1(X\setminus D,\,*),\,{\rm GL}(r,\mathbb{C}))$
. There is a canonical action of
${\rm GL}(r,\mathbb{C})$
on
$Y$
given by the adjoint action of
${\rm GL}(r,\mathbb{C})$
on itself, and we can take the corresponding categorical quotient

Under the genericity assumption in (5.19) of the eigenvalues of the residues, this quotient is in fact a geometric quotient, and we have a Riemann–Hilbert morphism

By [Reference InabaIna], the above Riemann–Hilbert morphism
${\rm RH}$
is a proper and surjective holomorphic map, which is generically an isomorphism. So
$\mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L)$
gives an analytic resolution of singularities of
${\rm Ch}_{X\setminus D,(b^{(i)}_j)}$
. Since the character variety
${\rm Ch}_{X\setminus D , (b^{(i)}_j)}$
is affine by its definition, it is evident that

By Theorem5.22 and (5.25) (or by Corollary 5.24), we have the following.
Corollary 5.25. The Riemann–Hilbert morphism
${\rm RH}\,\colon \, \mathcal{M}_{{\rm PC}}^{\boldsymbol{\alpha }}(\boldsymbol{\nu },\nabla _L) \,\longrightarrow \, {\rm Ch}_{X\setminus D,(b^{(i)}_j)}$
is not an algebraic morphism.
Appendix
Let
$k$
be an algebraically closed field of arbitrary characteristic. We will prove a lemma on the upper semi-continuity of the dimension of global sections of vector bundles on an algebraic space containing a projective variety over
$k$
.
Recall that an algebraic space
$\mathcal X$
of finite type over
$\textrm { Spec}\, k$
is said to be locally separated over
$\textrm { Spec}\, k$
if there is a scheme
$U$
of finite type over
$\textrm { Spec}\, k$
together with an étale surjective morphism
$U\,\longrightarrow \,{\mathcal X}$
such that
$U\times _{\mathcal X}U$
is a locally closed subscheme of
$U\times _{\textrm { Spec}\,\mathbb{C}}U$
. A locally separated algebraic space
$\mathcal X$
of finite type over
$\textrm { Spec}\, k$
is irreducible if the underlying topological space
$|{\mathcal X}|$
is irreducible. In other words, any two non-empty open subspaces
$U_1,\,U_2\,\subset \,{\mathcal X}$
intersect:
$U_1\cap U_2\,\neq \,\emptyset$
.
Lemma A.1. Let
$\mathcal X$
be a locally separated, smooth, irreducible algebraic space of finite type over
$\textrm { Spec}\, k$
. Assume that
$\overline {X}$
is an open subspace of
$\mathcal X$
such that
$\overline {X}$
is isomorphic to a smooth projective variety over
$k$
. Let
$T$
be an affine variety, and let
$\mathcal F$
be a locally free sheaf of finite rank on
${\mathcal X}\times T$
. For each point
$t\in T$
, denote by
$\Gamma ({\mathcal X}\times \{t\} ,\, {\mathcal F}|_{{\mathcal X}\times \{t\}})$
the space of global sections of the restriction
${\mathcal F}|_{{\mathcal X}\times \{t\}}$
. Then the function

is upper semi-continuous.
Proof. Since the upper semi-continuity is a local property on
$T$
, we may replace
$T$
with a neighborhood at any point of
$T$
. Take a finite number of smooth affine varieties
$\{U_i\}_{i=1}^n$
and an étale surjective morphism

whose restriction to
$\overline {X}$
coincides with the given inclusion map
$f|_{\overline {X}}\,\,\colon \, \overline {X}\,\hookrightarrow \, {\mathcal X}$
. After shrinking
$U_i$
and
$T$
, we may assume that
${\mathcal F}|_{U_i\times T}\,\cong \,{\mathcal O}_{U_i\times T}^{\oplus r}$
for every
$i$
. Since
$\mathcal X$
is irreducible, we have
$\overline {X}\cap (\bigcap _{i=1}^n f(U_i))\,\neq \,\emptyset$
. So there is a non-empty affine open subset
$V\,\subset \, \overline {X}\cap \bigcap _{i=1}^n f(U_i)$
. Take a non-empty smooth affine variety
$\widetilde {V}$
with étale morphisms
$\widetilde {V}\,\longrightarrow \, V$
and
$\widetilde {f}_i\,\colon \, \widetilde {V}\,\longrightarrow \, U_i$
for
$1\,\leqslant \, i\,\leqslant \, n$
such that the diagram

is commutative for every
$1\,\leqslant \, i\,\leqslant \, n$
.
Let
$\widetilde {X}$
be the normalization of
$\overline {X}$
in the field
$K(\widetilde {V})$
of rational functions on
$\widetilde {V}$
. Then
$\widetilde {X}$
is a projective variety with the following canonical commutative diagram.

After shrinking
$\widetilde {V}$
if necessary,
$\widetilde {V} \,\longrightarrow \,\widetilde {X}$
is an open immersion. We can take a very ample divisor
$D\,\subset \, \overline {X}$
such that
$\overline {X}\setminus V \,\subset \, D$
. Choose a very ample divisor
$\widetilde {D}$
on
$\widetilde {X}$
such that the inclusion
$\widetilde {X}\setminus \widetilde {V}\,\subset \, \widetilde {D}$
holds set theoretically and that
$D\times _{\overline {X}}\widetilde {X}\,\subset \, \widetilde {D}$
.
We can construct a projective variety
$P_i$
with a very ample divisor
$D_i\,\subset \, P_i$
such that
$P_i\setminus D_i$
is isomorphic to
$U_i$
. We can also take a very ample divisor
$D'_i\,\subset \, P_i$
such that
$P_i\setminus \widetilde {f}_i(\widetilde {V})\,\subset \, D'_i$
holds set theoretically and that
$D'_i\,=\,D_i+B_i$
holds for a divisor
$B_i$
without any common component with
$D_i$
.
For
$i\,\lt \,j$
, the fiber product
$U_i \times _{\mathcal X}U_j$
is a smooth quasi-affine scheme over
$\textrm { Spec}\, k$
. So we can construct a projective scheme
$P_{ij}$
over
$\textrm { Spec}\, k$
that contains
$U_i\times _{\mathcal X}U_j$
as a Zariski open subscheme. Choose a very ample divisor
$D_{ij}\,\subset \, P_{ij}$
such that
$P_{ij}\setminus (U_i\times _{\mathcal X}U_j)\,\subset \, D_{ij}$
.
Since
$\overline {X}$
is projective and
$D$
is very ample, we can take a sufficiently large integer
$l$
such that
$H^p(\overline {X}\times \{t\},\, {\mathcal F}|_{\overline {X}\times \{t\}}(lD))\,=\,0$
for all
$p\,\geqslant \, 1$
and
$t\,\in \, T$
. After shrinking
$T$
, the space of sections
$\Gamma ({\mathcal F}|_{\overline {X}\times T}(lD))$
is a free
$\Gamma ({\mathcal O}_T)$
–module of finite rank and the map
$\Gamma ({\mathcal F}|_{\overline {X}\times T}(lD))\otimes k(t) \,\longrightarrow \, \Gamma ({\mathcal F}|_{\overline {X}\times \{t\}}(lD))$
is bijective for any
$t\,\in \, T$
, where
$k(t)$
is the residue field of
${\mathcal O}_{T,t}$
.
Choose generators
$s_1,\,\cdots ,\,s_N$
of
$\Gamma ({\mathcal F}|_{\overline {X}\times T}(lD))$
. Consider the pullbacks of these sections by the morphism
$P_i\setminus D'_i\,\hookrightarrow \, \widetilde {f}_i(\widetilde {V})\,\xrightarrow {\,\,(f|_{U_i})|_{\widetilde {f}_i(\widetilde {V})}\,\,\,}\, V\,\hookrightarrow \, \overline {X}$
and denote them by

There is a sufficiently large integer
$l_i$
such that each
$s_1|_{P_i\setminus D'_i},\,\cdots ,\,s_N|_{P_i\setminus D'_i}$
can be lifted to a section of
$\Gamma ({\mathcal O}_{P_i\times T}(l_iD'_i))$
.
After shrinking
$T$
, the space of sections
$\Gamma ({\mathcal O}_{P_i\times T}(l_iD_i))$
is a free
$\Gamma ({\mathcal O}_T)$
–module of finite rank. Fix a basis
$t^{(i)}_1,\,\cdots ,\,t^{(i)}_{N_i}$
of it. Let
$t^{(i)}_\ell \big |_{\widetilde {X}\setminus \widetilde {D}}$
be the pullback of
$t^{(i)}_\ell$
by the composition of the maps

Then there is an integer
$\widetilde {l}\,\geqslant \, l$
such that all
$t^{(i)}_1\big |_{\widetilde {X}\setminus \widetilde {D}},\, \cdots ,\, t^{(i)}_{N_i}\big |_{\widetilde {X}\setminus \widetilde {D}}$
can be lifted to sections
$\widetilde {t}^{(i)}_1,\,\cdots , \,\widetilde {t}^{(i)}_{N_i}$
of
$\Gamma ({\mathcal F}_{\widetilde {X}\times T}(\widetilde {l}\,\widetilde {D}))$
for
$1\,\leqslant \,i\,\leqslant \, n$
.
Consider the pullback
$t^{(i)}_{\gamma }\big |_{P_{ij}\setminus D_{ij}}$
of
$t^{(i)}_{\gamma }$
by the composition of maps

If we choose
$l_{ij}$
sufficiently large, all
$t^{(i)}_1\big |_{P_{ij}\setminus D_{ij}},\,\cdots ,\,t^{(i)}_{N_i}\big |_{P_{ij}\setminus D_{ij}}$
can be lifted to sections

of
$\Gamma ({\mathcal O}_{P_i\times T}(l_{ij}D_{ij})^{\oplus r})$
. We may also assume that all
$t^{(j)}_1\big |_{P_{ij}\setminus D_{ij}},\,\cdots ,\,t^{(j)}_{N_j}\big |_{P_{ij}\setminus D_{ij}}$
can be lifted to sections
$t^{(j)}_{i,1},\,\cdots ,\,t^{(j)}_{i,N_j}$
of
$\Gamma ({\mathcal O}_{P_i\times T}(l_{ij}D_{ij})^{\oplus r})$
.
Take a resolution

where
${\mathcal L}_i\,=\, {\mathcal O}_{\overline {X}\times T}(-m_i)^{\oplus R_i}$
for
$i\,=\,1,\,2$
and
$m_i\,\gg \, 1$
. After shrinking
$T$
, both
$\Gamma ({\mathcal L}_i^{\vee })$
and
$\Gamma ({\mathcal L}_i^{\vee }(lD))$
are free
$\Gamma ({\mathcal O}_T)$
–modules for
$i\,=\,1,\,2$
. Let
${\mathcal F}|_{\widetilde {X}\times T}$
and
${\mathcal L}_i|_{\widetilde {X}\times T}$
respectively be the pullbacks of
${\mathcal F}|_{\overline {X}\times T}$
and
${\mathcal L}_i$
by the morphism
$\widetilde {X}\times T\,\longrightarrow \,\overline {X}\times T$
. Then there is the following commutative diagram with exact rows.

Consider the homomorphism

defined by

where
$\iota \,\colon \, \Gamma ({\mathcal L}_0^{\vee }) \,\longrightarrow \, \Gamma ({\mathcal L}_0^{\vee }(\widetilde {l}\,\widetilde {D}))$
is the canonical inclusion map and

is the map induced by
$\psi$
.
Claim.
$\Gamma ({{\mathcal X}\times \{t\},\,\, \mathcal F}|_{{\mathcal X}\times \{t\}}) \,\,=\,\, \ker (\Phi \otimes k(t))$
for any
$t\,\in \,T$
.
Proof of Claim. Take a section
$s\,\in \, \Gamma ({{\mathcal X}\times \{t\},\, \mathcal F}|_{{\mathcal X}\times \{t\}})$
. Its restriction
$s|_{\overline {X}\times \{t\}}$
is a section of
$\Gamma (\overline {X},\,{\mathcal F}|_{\overline {X}\times \{t\}}) \,\subset \, \Gamma (\overline {X},{\mathcal F}|_{\overline {X}\times \{t\}}(lD))$
. From the choice of
$l_i$
, the pullback
$(f|_{U_i\cap \widetilde {f}_i(\widetilde {V})})^*(s|_{\overline {X}\times \{t\}})$
can be lifted to a section
$\sigma _i$
of
$\Gamma ({\mathcal O}_{P_i\times \{t\}}(l_iD'_i))$
. On the other hand, we have
$(s|_{U_i})|_{\widetilde {f}_i(\widetilde {V})} \,=\, (f|_{U_i\cap \widetilde {f}_i(\widetilde {V})})^*(s|_{\overline {X}\times \{t\}})$
. Since
$s|_{U_i}$
does not have pole along
$B_i$
, it follows that
$\sigma _i$
belongs to
$\Gamma ({\mathcal O}_{P_i\times \{t\}}(l_iD_i))$
. So we get an element
$\big ( \psi ^{\vee }\big (s|_{\overline {X}\times \{t\}}\big ) ,\, (\sigma _i)_i \big )$
of

By the construction, we have
$\Phi \big ( \psi ^{\vee }\big (s|_{\overline {X}\times \{t\}}\big ) ,\, (\sigma _i)_i \big ) \,=\,0$
. So we get the inclusion map
$\Gamma ({{\mathcal X}\times \{t\}, \,\mathcal F}|_{{\mathcal X}\times \{t\}}) \,\subset \, \ker (\Phi \otimes k(t))$
.
To prove the reverse direction, take a section
$(\alpha ,\,(s_i))\,\in \, \ker (\Phi \otimes k(t))$
. Since
$\Gamma (\partial _{{\mathcal L}_{\bullet}}) (\alpha )\,=\,0$
, there is a section
$s\,\in \, \Gamma ({\mathcal F}|_{\overline {X}\times \{t\}})$
such that
$\psi ^{\vee }(s)\,=\,\alpha$
. Considering the middle component of
$\Phi (\alpha ,\, (s_i))\,=\,0$
, we obtain the equality
$s|_{\overline {X}\times _{\mathcal X}U_i}\,=\,s_i|_{\overline {X}\times _{\mathcal X}U_i}$
, because the maps
$\Gamma ({\mathcal F}|_{\widetilde {X}\times T}(\widetilde {l}\widetilde {D})) \,\longrightarrow \, \Gamma ({\mathcal L}_0^{\vee }|_{\widetilde {X}\times T}(\widetilde {l}\widetilde {D}))$
and
$\Gamma ({\mathcal F}|_{(\overline {X}\times _{\mathcal X}U_i)\times \{t\}}) \,\longrightarrow \, \Gamma ({\mathcal F}|_{(\widetilde {X}\setminus \widetilde {D})\times \{t\}})$
are injective. So
$(s,\,(s_i))$
is in the kernel of

which is in fact
$\Gamma ({{\mathcal X}\times \{t\},\, \mathcal F}\big |_{{\mathcal X}\times \{t\}})$
. So we also have the inclusion

This proves the claim.
Since the claim holds, it suffices to show that

is Zariski closed for any
$d\,\in \,\mathbb{Z}_{\geqslant 0}$
. Note that

Since the subset of
$T$
given by locus of all points satisfying the condition

is Zariski closed, the proof of the lemma is complete.
Acknowledgements
We are very grateful to the referee for detailed comments to improve the exposition. The work was initiated during a visit of IB to Kobe University. He is grateful to Kobe University for its hospitality and great working conditions. During the conference The 13th MSJ-SI “Differential Geometry and Integrable Systems”, all of the authors fortunately had opportunities to meet together, which pushed the work to its completion. They are grateful to Professor Masashi Yasumoto for an excellent organization of the conference.
Financial Support
This work was partly supported by JSPS KAKENHI under grant numbers JP17H06127, JP19K03422, JP19K14506, JP22H00094 and JP22K18669. The first author is partially supported by a J. C. Bose Fellowship (JBR/2023/000003).
Conflicts of Interest
None.
Journal Information
Moduli is published as a joint venture of the Foundation Compositio Mathematica and the London Mathematical Society. As not-for-profit organisations, the Foundation and Society reinvest
$100\%$
of any surplus generated from their publications back into mathematics through their charitable activities.