Skip to main content Accessibility help

2D Colloidal Nanoplatelets based Optoelectronics

  • Adrien Robin (a1) (a2), Emmanuel Lhuillier (a3) and Benoit Dubertret (a2)


Two-Dimensional materials open up great prospects in photodetector applications owing to their sharp optical properties and the ability to combine them in layered heterostructures. Among this new class of materials, colloidal nanoplatelets (NPL) made of cadmium chalcogenides readily combine the thickness control at the atomic level together with the large scale production and ease of processing of colloidal materials. As a strategy to overcome the limited mobility inherent to nanocrystal based devices, the photocarrier lifetime is increased by building an electrolyte-gated phototransistor to passivate the electron traps. NPL can also be coupled with a graphene transport layer collecting the photogenerated charges, thus bypassing the transport bottleneck. We show that the charge transfer is driven by the large exciton binding energy of the NPL, which can be engineered by heterostructured NPL. This allows us to control the magnitude and the direction of the charge transfer to graphene. Eventually, we use nanotrench electrodes to decrease the transit time of the carriers, suppress the influence of film defects and provide an electric field large enough to overcome the large exciton binding energy of NPL.


Corresponding author

*To whom correspondence should be addressed:


Hide All
[1] Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., and Dubertret, B., “Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications,” Acc. Chem. Res., vol. 48, no. 1, pp. 2230, Jan. 2015.
[2] Lhuillier, E., Scarafagio, M., Hease, P., Nadal, B., Aubin, H., Xu, X. Z., Lequeux, N., Patriarche, G., Ithurria, S., and Dubertret, B., “Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz,” Nano Lett., Jan. 2016.
[3] Li, M., Zhi, M., Zhu, H., Wu, W.-Y., Xu, Q.-H., Jhon, M. H., and Chan, Y., “Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution,” Nat. Commun., vol. 6, p. 8513, Sep. 2015.
[4] Pedetti, S., Nadal, B., Lhuillier, E., Mahler, B., Bouet, C., Abécassis, B., Xu, X., and Dubertret, B., “Optimized Synthesis of CdTe Nanoplatelets and Photoresponse of CdTe Nanoplatelets Films,” Chem. Mater., vol. 25, no. 12, pp. 24552462, Jun. 2013.
[5] Lhuillier, E., Robin, A., Ithurria, S., Aubin, H., and Dubertret, B., “Electrolyte-Gated Colloidal Nanoplatelets-Based Phototransistor and Its Use for Bicolor Detection,” Nano Lett., vol. 14, no. 5, pp. 27152719, May 2014.
[6] Lhuillier, E., Ithurria, S., Descamps-Mandine, A., Douillard, T., Castaing, R., Xu, X. Z., Taberna, P.-L., Simon, P., Aubin, H., and Dubertret, B., “Investigating the n- and p-Type Electrolytic Charging of Colloidal Nanoplatelets,” J. Phys. Chem. C, vol. 119, no. 38, pp. 2179521799, Sep. 2015.
[7] Benchamekh, R., Gippius, N. A., Even, J., Nestoklon, M. O., Jancu, J.-M., Ithurria, S., Dubertret, B., Efros, A. L., and Voisin, P., “Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe,” Phys. Rev. B, vol. 89, no. 3, p. 35307, Jan. 2014.
[8] Robin, A., Lhuillier, E., Xu, X. Z., Ithurria, S., Aubin, H., Ouerghi, A., and Dubertret, B., “Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors,” Sci. Rep., vol. 6, p. 24909, May 2016.
[9] Konstantatos, G., Badioli, M., Gaudreau, L., Osmond, J., Bernechea, M., de Arquer, F. P. G., Gatti, F., and Koppens, F. H. L., “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nat. Nanotechnol., vol. 7, no. 6, pp. 363368, May 2012.
[10] Prins, F., Buscema, M., Seldenthuis, J. S., Etaki, S., Buchs, G., Barkelid, M., Zwiller, V., Gao, Y., Houtepen, A. J., Siebbeles, L. D. A., and van der Zant, H. S. J., “Fast and Efficient Photodetection in Nanoscale Quantum-Dot Junctions,” Nano Lett., vol. 12, no. 11, pp. 57405743, Nov. 2012.
[11] Dayen, J.-F., Faramarzi, V., Pauly, M., Kemp, N. T., Barbero, M., Pichon, B. P., Majjad, H., Begin-Colin, S., and Doudin, B., “Nanotrench for nano and microparticle electrical interconnects,” Nanotechnology, vol. 21, no. 33, p. 335303, 2010.
[12] Lhuillier, E., Dayen, J.-F., Thomas, D. O., Robin, A., Doudin, B., and Dubertret, B., “Nanoplatelets Bridging a Nanotrench: A New Architecture for Photodetectors with Increased Sensitivity,” Nano Lett., vol. 15, no. 3, pp. 17361742, Mar. 2015.
[13] Ithurria, S. and Talapin, D. V., “Colloidal Atomic Layer Deposition (c-ALD) using Self-Limiting Reactions at Nanocrystal Surface Coupled to Phase Transfer between Polar and Nonpolar Media,” J. Am. Chem. Soc., vol. 134, no. 45, pp. 1858518590, Nov. 2012.
[14] Pedetti, S., Ithurria, S., Heuclin, H., Patriarche, G., and Dubertret, B., “Type-II CdSe/CdTe Core/Crown Semiconductor Nanoplatelets,” J. Am. Chem. Soc., vol. 136, no. 46, pp. 1643016438, 2014.
[15] Pallecchi, E., Lafont, F., Cavaliere, V., Schopfer, F., Mailly, D., Poirier, W., and Ouerghi, A., “High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealing under hydrogen,” Sci. Rep., vol. 4, p. 4558, Apr. 2014.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed