Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-b2xwp Total loading time: 0.313 Render date: 2022-10-06T02:35:39.961Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Article contents

Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere

Published online by Cambridge University Press:  28 January 2020

Alexandre Barreiro Fidalgo*
Affiliation:
Studsvik Nuclear AB, Nyköping, Sweden
Olivia Roth
Affiliation:
Studsvik Nuclear AB, Nyköping, Sweden
Anders Puranen
Affiliation:
Studsvik Nuclear AB, Nyköping, Sweden
Lena Z. Evins
Affiliation:
The Swedish Nuclear Fuel Waste Management Company (SKB), Stockholm, Sweden
Kastriot Spahiu
Affiliation:
The Swedish Nuclear Fuel Waste Management Company (SKB), Stockholm, Sweden
Get access

Abstract

Leaching results to compare the dissolution behavior of a new type of fuel with additives (Advanced Doped Pellet Technology, ADOPT) with standard UO2 fuel are presented. Both fuels were irradiated in the same assembly of a commercial boiling water reactor to a local burnup of ∼58 MWd/kgU. Fuel fragments are leached in simplified groundwater in two autoclaves under hydrogen atmosphere, representing conditions in a canister failure scenario resulting in water intrusion for a spent nuclear fuel repository. Preliminary results indicate the uranium concentration decreased to 3-4x10-8 M after 421 days, slightly above the solubility of amorphous UO2. Xe has been detected in the gas phase of both autoclaves. The concentration of Cs and I seems to gradually approach constant values, yet the redox sensitive elements continue to slowly increase with time. The preliminary data obtained supports the hypothesis that there is no major difference in leaching behavior between the two fuels.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Arborelius, J. et al. J. Nucl. Sci. Technol. , 43, 967-976 (2006).CrossRefGoogle Scholar
Roth, O. et al. Leaching of high burn up spent fuel with and without matrix dopants, In Kienzler, B., Metz, V., Duro, L., Valls, A. Final (3rd) Annual Workshop Proceedings of the 7th EC FP CP FIRST-Nuclides project 2014.Google Scholar
Nilsson, K. et al. J. Nucl. Mater., 488, 123-128 (2017).CrossRefGoogle Scholar
Guillamont, R. et al. Update on the chemical thermodynamics of U, Np, Pu, Am and Tc, OECD NEA, Elsevier (2003)Google Scholar
Puranen, A., Roth, O., Evins, L.Z., Spahiu, K., MRS Advances 3(19), 1013-1018 (2018)CrossRefGoogle Scholar
Roudil, et al. J. Nucl. Mater, 362, 411-415 (2007)CrossRefGoogle Scholar
Fors, P., Carbol, P., Van Winkel, S., Spahiu, K., J. Nucl. Mater. 394, 1-8 (2009).CrossRefGoogle Scholar
Loida, A., Metz, V., Kienzler, B., Geckeis, H., J. Nucl. Mater. 346, 24-31 (2005)CrossRefGoogle Scholar
Spahiu, K., Cui, D., Lundström, M., Radiochimica Acta, 92(9-11), 625-629 (2004)Google Scholar
Gray, W.J. and Wilson, C.N. (1995) Spent Fuel Dissolution Studies FY 1991 to 1994, PNL-10540, Pacific Northwest National LaboratoryCrossRefGoogle Scholar
Puranen, A. et al., MRS Advances, Vol. 1(52), 4169-4175 (2016)CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *