Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T11:42:54.484Z Has data issue: false hasContentIssue false

Polyetheresterurethane Based Porous Scaffolds with Tailorable Architectures by Supercritical CO2 Foaming

Published online by Cambridge University Press:  08 September 2020

Marc Behl
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Muhammad Yasar Razzaq
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Magdalena Mazurek-Budzyńska
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476Potsdam, Germany
*
*Correspondence to: Prof. Andreas Lendlein andreas.lendlein@hzg.de
Get access

Abstract

Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2 (scCO2) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100–800 μm along with a porosity in the range from (19 ± 3 to 61 ± 6)% and interconnectivity of up to 82%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO2 foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, X. W., Qiao, Y. H., Chen, Y. X., He, G. J. and Lin, H., Polym Eng Sci 56 (9), 980986 (2016).CrossRefGoogle Scholar
Dolomanova, V., Kumar, V., Pyrz, R., Madaleno, L. A. O., Jensen, L. R. and Rauhe, J. C. M., Cell Polym 31 (3), 125143 (2012).CrossRefGoogle Scholar
Dolomanova, V., Kumar, V., Pyrz, R., Madaleno, L. A. O., Jensen, L. R. and Rauhe, J. C. M., Cell Polym 32 (1), 119 (2013).CrossRefGoogle Scholar
Ellingham, T., Duddleston, L. and Turng, L. S., Polymer 117, 132139 (2017).CrossRefGoogle Scholar
Lan, X. Q., Zhai, W. T. and Zheng, W. G., Ind Eng Chem Res 52 (16), 56555665 (2013).CrossRefGoogle Scholar
Wang, X. X., Kumar, V. and Li, W., Cell Polym 31 (1), 118 (2012).CrossRefGoogle Scholar
Weigel, T., Schinkel, G. and Lendlein, A., Expert Rev Med Devic 3 (6), 835851 (2006).CrossRefGoogle Scholar
Luetzow, K., Klein, F., Weigel, T., Apostel, R., Weiss, A. and Lendlein, A., J Biomech 40, S80-S88 (2007).CrossRefGoogle Scholar
Goonoo, N., Bhaw-Luximon, A., Bowlin, G. L. and Jhurry, D., Polym Int 62 (4), 523533 (2013).CrossRefGoogle Scholar
Grunlan, M., Zhang, D. W., Hahn, M., Erndt-Marino, J. and Jimenez-Vergara, A., Abstr Pap Am Chem S 252 (2016).Google Scholar
Heitz, J., Plamadeala, C., Wiesbauer, M., Freudenthaler, P., Wollhofen, R., Jacak, J., Klar, T. A., Magnus, B., Kostner, D., Weth, A., Baumgartner, W. and Marksteiner, R., J Biomed Mater Res A 105 (3), 891899 (2017).CrossRefGoogle Scholar
Hu, Y. H., Winn, S. R., Krajbich, I. and Hollinger, J. O., J Biomed Mater Res A 64a (3), 583590 (2003).CrossRefGoogle Scholar
Iwasaki, N., Kasahara, Y., Yamane, S., Igarashi, T., Minami, A. and Nisimura, S., Polymers-Basel 3 (1), 100113 (2011).CrossRefGoogle Scholar
Jaramillo-Botero, A., Blanco, M., Li, Y. Y., McGuinness, G. and Goddard, W. A., J Comput Theor Nanos 7 (7), 12381256 (2010).CrossRefGoogle Scholar
Ji, G. Y., Zhai, W. T., Lin, D. P., Ren, Q., Zheng, W. G. and Jung, D. W., Ind Eng Chem Res 52 (19), 63906398 (2013).CrossRefGoogle Scholar
Jin, G. Z., Kim, T. H., Kim, J. H., Won, J. E., Yoo, S. Y., Choi, S. J., Hyun, J. K. and Kim, H. W., J Biomed Mater Res A 101 (5), 12831291 (2013).CrossRefGoogle Scholar
Ju, Y. M., Park, K., Son, J. S., Kim, J. J., Rhie, J. W. and Han, D. K., J Biomed Mater Res B 85b (1), 252260 (2008).CrossRefGoogle Scholar
Mi, H. Y., Palumbo, S., Jing, X., Turng, L. S., Li, W. J. and Peng, X. F., J Biomed Mater Res B 102 (7), 14341444 (2014).CrossRefGoogle Scholar
Nawaby, A. V., Farah, A. A., Liao, X., Pietro, W. J. and Day, M., Biomacromolecules 6 (5), 24582461 (2005).CrossRefGoogle Scholar
Pertici, G., Carinci, F., Carusi, G., Epistatus, D., Villa, T., Crivelli, F., Rossi, F. and Perale, G., J Biol Reg Homeos Ag 29 (3), 136148 (2015).Google Scholar
Rahman, M. M., Shahruzzaman, M., Islam, M. S., Khan, M. N. and Haque, P., J Polym Eng 39 (2), 134142 (2019).CrossRefGoogle Scholar
Ros-Tarraga, P., Murciano, A., Mazon, P., Gehrke, S. A. and De Aza, P. N., Ceram Int 43 (8), 65486553 (2017).CrossRefGoogle Scholar
Ryan, K. B. and Mooney, D. J., Tissue Eng Pt A 21, S108S109 (2015).Google Scholar
Sadiasa, A., Nguyen, T. H. and Lee, B. T., J Biomat Sci-Polym E 25 (2), 150167 (2014).CrossRefGoogle Scholar
San Roman, J., Martin, M., Rojo, L., Rosales, R. and Deb, S., Tissue Eng Pt A 21, S59S59 (2015).Google Scholar
Gualandi, C., White, L. J., Chen, L., Gross, R. A., Shakesheff, K. M., Howdle, S. M. and Scandola, M., Acta Biomaterialia 6 (1), 130136 (2010).CrossRefGoogle Scholar
Albuerne, J., Marquez, L., Müller, A. J., Raquez, J.-M., Degée, P. and Dubois, P., Macromolecular Chemistry and Physics 206 (9), 903914 (2005).CrossRefGoogle Scholar
Brito, Y., Sabino, M. A., Ronca, G. and Müller, A. J., Journal of Applied Polymer Science 110 (6), 38483858 (2008).CrossRefGoogle Scholar
Chaim, I. A., Sabino, M. A., Mendt, M., Müller, A. J. and Ajami, D., Journal of Tissue Engineering and Regenerative Medicine 6 (4), 272279 (2012).CrossRefGoogle Scholar
Lendlein, A. and Langer, R., Science 296 (5573), 16731676 (2002).CrossRefGoogle Scholar
Rickert, D., Scheithauer, M. O., Coskun, S., Kelch, S., Lendlein, A. and Franke, R. P., Clin Hemorheol Micro 36 (4), 301311 (2007).Google Scholar
White, L. J., Hutter, V., Tai, H., Howdle, S. M. and Shakesheff, K. M., Acta Biomaterialia 8 (1), 6171 (2012).CrossRefGoogle Scholar
Chen, C. X., Liu, Q. Q., Xin, X., Guan, Y. X. and Yao, S. J., J Supercrit Fluid 117, 279288 (2016).CrossRefGoogle Scholar
Behl, M., Ridder, U., Feng, Y., Kelch, S. and Lendlein, A., Soft Matter 5 (3), 676684 (2009).CrossRefGoogle Scholar
Hiebl, B., Fuhrmann, R., Jung, F., Kratz, K., Lendlein, A. and Franke, R. P., Clin Hemorheol Micro 45 (2–4), 117122 (2010).Google Scholar
Cui, J., Kratz, K., Hiebl, B., Jung, F. and Lendlein, A., Tissue Eng Pt A 17 (3–4), 563563 (2011).Google Scholar
Karimi, M., Heuchel, M., Weigel, T., Schossig, M., Hofmann, D. and Lendlein, A., J Supercrit Fluid 61, 175190 (2012).CrossRefGoogle Scholar
Goel, S. K. and Beckman, E. J., Polym Eng Sci 34 (14), 11371147 (1994).CrossRefGoogle Scholar
Fanovich, M. A. and Jaeger, P., Mat Sci Eng C-Mater 32 (4), 961968 (2012).CrossRefGoogle Scholar