Skip to main content

Accelerated Nano Super Bainite in Ductile Iron

  • Eric Jiahan Zhao (a1), Cheng Liu (a2) and Derek O. Northwood (a3)

A commercial unalloyed ductile iron has been developed to produce a multiphase matrix microstructure consisting of lenticular prior martensite, feathery upper bainite and a nano-scaled super bainite of lath bainitic ferrite and carbon-enriched film retained austenite. Multi-step heat treatment composed of austenizing, rapidly quenching and isothermally holding at low temperature have been developed. A tensile strength of more than 1.6 GPa, a hardness higher than HRC 54, and an elongation in excess of 5%, are achieved. This is attributed to a synergistic multi-phase strengthening effect. The developed nano super bainite exhibits a good balance between strength and toughness. The presence of martensite formed during the quenching prior to the isothermal treatment, accelerates the kinetics of subsequent nano super bainitic transformation by bainitic laths nucleating quickly at the martensite-austenite interfaces.

Corresponding author
Hide All
1.Panneerselvam, S., Martis, C. J., Putatunda, S. K., and Boileau, J. M., Materials Science & Engineering A, 626, 237246 (2015).
2.Sohi, M. H., Ahmadabadi, M. N. and Vahdat, A. B., J. Mater. Process. Technol. 153–154, 203208 (2004).
3.Artola, G., Gallastegi, I., Izaga, J., Barrena, M. and Rimmer, A., Int. J. of Metalcasting, 11(1), 131135 (2017).
4.Edmonds, D. V., He, K., Rizzo, F. C., De Cooman, B. C., Matlock, D. K. and Speer, J. G., Mater. Sci. and Eng. A, 438-440, 2534 (2006).
5.Wang, M. -M., Hell, J. -C. and Tasan, C. C., Scr. Mater., 138, 15 (2017).
6.Caballero, F. G. and Bhadeshia, H. K. D. H., Solid State Mater. Sci., 8, 251257 (2004).
7.Caballero, F. G., Miller, M. K. and Garcia-Mateo, C., Mater. Sci. Technol., 26, 889898 (2010).
8.Gong, W., Tomota, Y., Harjo, S., Su, Y. H. and Aizawa, K., Acta Mater., 85, 243249 (2015).
9.Liu, C., Yang, C., Northwood, D. O., Mater. Sci. Technol., 33, 18191828, (2017).
10.Mallia, J., Grech, M. and Smallman, R. E., Mater. Sci. Technol., 14, 452460 (1998).
11.Navarro-López, A., Sietsma, J. and Santofimia, M. J., Metall. Mater. Trans. A, 47, 10281039 (2016).
12.Toji, Y., Matsuda, H. and Raabe, D., Acta Mater., 116, 250262 (2016).
13.Zakerinia, H., Kermanpur, A. and Najafizadeh, A., Mater. Sci.. and Eng. A, 528, 35623567 (2011).
14.Golchin, S., Avishan, B. and Yazdani, S., Mater. Sci. and Eng. A, 656, 94101 (2016).
15.Yang, C., Cui, X. X. and Liu, C., Mater. Sci. Technol., 34, 261267 (2018).
16.Liu, C., Zhao, Z. B., Bhole, S. D., Mater. Sci. and Eng. A, 434, 289293 (2006).
17.Olivera, E., Dragan, R., Slavica, Z., Sidjanin, L. and Jovanovic, M. T., Mater. Charact. 57, 211217 (2016).
18.Yang, C., Northwood, D. O. and Liu, C., Int. J. of Comp. Methods and Experimental Measurements, 6 (3), 455462 (2018).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed