Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T19:59:09.554Z Has data issue: false hasContentIssue false

Approaches to the development of environmentally friendly and resource-saving technology for solar-grade silicon production

Published online by Cambridge University Press:  15 July 2019

Sergey M. Karabanov*
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
Dmitriy V. Suvorov
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
Dmitry Y. Tarabrin
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
Evgeniy V. Slivkin
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
Andrey S. Karabanov
Affiliation:
Helios Resource Ltd., 126 Proletarskaya St., Saransk430001, Mordovia, Russia
Oleg A. Belyakov
Affiliation:
Helios Resource Ltd., 126 Proletarskaya St., Saransk430001, Mordovia, Russia
Andrey A. Trubitsyn
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
Andrey Serebryakov
Affiliation:
Ryazan State Radio Engineering University, 59/1 Gagarina St., Ryazan390005, Russia
*
Get access

Abstract

Currently, the main material for the production of solar cells is still silicon. More than 70% of the global production of solar cells are silicon based. For solar-grade silicon production the technologies based on the reduction of silicon from organosilicon compounds are mainly used. These technologies are energy-consuming, highly explosive and unsustainable.

The present paper studies the technology of purification of metallurgical-grade silicon by vacuum-thermal and plasma-chemical treatment of silicon melt under electromagnetic stirring using numerical simulation and compares this technology with the existing ones (silane technologies and Elkem Solar silicon (ESS) production process) in terms of energy consumption, environmental safety and the process scalability.

It is shown that the proposed technology is environmentally safe, scalable and has low power consumption. The final product of this technology is multicrystalline silicon, ready for silicon wafer production.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Ceccaroli, B., Ovrelid, E. and Pizzini, S., Solar Silicon Processes: Technologies, Challenges, and Opportunities , (CRC Press Tayler & Francis group, 2016), p. 258.CrossRefGoogle Scholar
Ramos, W.O., Lindholm, F.D., Ramachandran, P.A., Rodriguez, A. and del Canizo, C., Deposition reactors for solar grade silicon: A comparative thermal analysis of a Siemens reactor and a fluidized bed reactor, Netherlands: N. p., 2015.Google Scholar
Braga, A.F.B., Moreira, S.P., Zampieri, P.R., Bacchin, J.M.G. and Mei, P.R., Sol. Energy Mater. Sol. Cells 92, 418-424 (2008).CrossRefGoogle Scholar
Delannoy, Y., J. Cryst. Growth 360, 61-67 (2012).CrossRefGoogle Scholar
Lee, W., Yoon, W. and Park, C., J. Cryst. Growth 312, 146-148 (2009).CrossRefGoogle Scholar
Zheng, S.S., Chen, W.H., Cai, J, Li, J.T., Chen, C. and Luo, X.T., Metallurgical and Materials Transactions B 41, 1268 (2010).CrossRefGoogle Scholar
Safarian, J. and Tangstad, M.. Metallurgical and Materials Transactions B 43(6), 1427-1445 (2012).CrossRefGoogle Scholar
Dong, W., Wang, Q., Peng, Xu, Tan, Yi and Jiang, Da C., Materials Science Forum 675-677, 45-48 (2011).CrossRefGoogle Scholar
Nakamura, N., Baba, H., Sakaguchi, Y., Hiwasa, S. and Kato, Y., J. Japan Inst. Met. 67, 583 (2003).CrossRefGoogle Scholar
Alemany, C., Trassy, C, Pateyron, Bernard, Li, K.-I. and Delannoy, Y., Sol. Energy Mater. Sol. Cells 72, 41 (2002).CrossRefGoogle Scholar
Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y., Slivkin, E.V., Korotchenko, V.A., Vlasov, A.N., Belyakov, O.A., Karabanov, A.S. and Dshkhunyan, V.L., Study of interaction of a plasma jet with the silicon melt surface under the conditions of its high turbulence, 2017 EEEIC / I&CPS Europe, Milan, 2017, pp. 377-381.Google Scholar
Karabanov, S. M., Yasevich, V. I., Suvorov, D. V. and Karabanov, A.S., Mathematical modeling and experimental research of the method of plasma chemical purification of metallurgical- grade silicon, 2016 EEEIC, Florence, 2016, pp. 1-5.Google Scholar
Li, P., Ren, S., Jiang, D., Li, J., Zhang, L. and Tan, Y., J. Cryst. Growth 437, 14-19 (2016).CrossRefGoogle Scholar
Kudla, Ch., Blumenau, A.T., Bullesfeld, F., Dropka, N., Frank-Rotsch, Ch., Kiessling, F., Klein, O., Lange, P., Miller, W., Rehse, U., Sahr, U., Schellhorn, M., Weidemann, G., Ziem, M., Bethin, G., Fornari, R., Muller, M., Sprekels, J., Trautmann, V. and Rudolph, P., J. Cryst. Growth 365, 54-58 (2013).CrossRefGoogle Scholar
Dropka, N., Frank-Rotsch, Ch., Rudolph, P., J. Cryst. Growth 365, 64-72 (2013).CrossRefGoogle Scholar
Rudolph, P., J. Cryst. Growth 310, 1298-1306 (2008).CrossRefGoogle Scholar
Karabanov, S.M., Suvorov, D.V., Tarabrin, D.Y., Slivkin, E.V., Belyakov, O.A. and Karabanov, A.S., Study of Electromagnetic Stirring of Silicon Melt by Mathematic Modeling,, 2018 EEEIC /I&CPS Europe, Palermo, 2018, DOI:10.1109/EEEIC.2018.8494593.Google Scholar
Santara, Fatoumata & Delannoy, Yves & Autruffe, Antoine. J. Cryst. Growth 340, 41-46 (2012).CrossRefGoogle Scholar
de Wild-Scholten, M.J., Glockner, R., Odden, J.-O., Halvorsen, G. and Tronstad, R., LCA comparison of the Elkem Solar metallurgical route and conventional gas routes to solar silicon, 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September, 2008.Google Scholar
Yu, Q., Liu, L., Li, Z., and Su, P., J. Cryst. Growth 401, 285-290 ( 2016).CrossRefGoogle Scholar
Tang, K., Øvrelid, E.J., Tranell, G., Tangstad, M.. Thermochemical and kinetic databases for the solar cell silicon materials, The Twelfth International Ferroalloys Congress. - June 6 - 9, 2010. Helsinki, FinlandGoogle Scholar