Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-27T13:54:43.965Z Has data issue: false hasContentIssue false

Comparison of anti-reflective properties of single layer anatase andrutile TiO2 on GaAs based solar cells

Published online by Cambridge University Press:  09 February 2016

R. Vasan*
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
Y. F. Makableh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
M. O. Manasreh
Affiliation:
Department of Electrical Engineering, 3217 Bell Engineering Center, University of Arkansas, Fayetteville, AR 72701
Get access

Abstract

Anatase and rutile titanium dioxide thin films grown by a low temperature processare investigated for their use as a single layer antireflection coating for GaAssolar cells. The thin films are obtained by spin coating a layer from theTiO2 sol-gel and subsequently annealing at 150 °C. Thesol-gel is synthesized by the hydrolysis of titanium isopropoxide in thepresence of an acid or a base. By controlling the pH of the sol-gel duringgrowth, pure anatase and rutile phases are obtained. A pH of around 3.0 yieldsanatase phase while a pH of 9.0 yields pure rutile phase TiO2. Thetwo different phases of TiO2 are characterized by measuring the Ramanscattering spectra. The optical constants, thickness and reflectance of the thinfilms on GaAs are obtained using a spectroscopic ellipsometer. The sol-gel isspin coated on GaAs based solar cells and annealed at 150 °C to formthe anti-reflective layer. The performance of the solar cells is evaluatedbefore and after coating with the TiO2 films. The anataseTiO2 anti-reflective films performed better than the rutile with amaximum power conversion efficiency enhancement of 50%. Quantum efficiencyenhancement of 58% and 25% are obtained with anatase and rutile phase filmsrespectively. The performance enhancement of the solar cells using these thinfilms can be attributed to the destructive interference of light associated witha single layer coating on the solar cell surface.

Information

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Makableh, Y. F., Vasan, R., Sarker, J. C., Nusir, A. I., Seal, S., and Manasreh, M. O., Solar Energy Mat. Solar Cells 123 (2014) 178182.CrossRefGoogle Scholar
Su, B. Y., Chu, S. Y., Juang, Y. D., Lin, M. C., Chang, C. C., and Wu, C. J., J. Electrochem. Soc. 159 (2012) H312H315.Google Scholar
Makableh, Y. F., Vasan, R., Lee, S., and Manasreh, M. O., Appl. Phys. Lett. 102 (2013) 19041906.Google Scholar
Lin, Y. J., Chien, L.Y., Lee, Y. Y., Chen, Y. L., Yu, C. M., Lai, Q. R., Syu, J. K., and Shiau, H. P., Conference on Lasers and Electro-Optics, 1-6 May 2011 Baltimore, MD, USA, pp. 12.Google Scholar
Jung, S. M., Kim, Y. H., Kim, S. I., and Yoo, S. I., Current Appl. Phys. 11 (2011) 538541.CrossRefGoogle Scholar
Alexieva, Z. I., Nenova, Z. S., Bakardjieva, V. S., Milanova, M. M., and Dikov, H. M., J. Phys.: Conf. Ser. 223 (2010) 204207.Google Scholar
Leem, J. W., Jun, D. H., Heo, J., Park, W. K., Park, J. H., Cho, W. J., Kim, D. E., and Yu, S., Opt. Exp. 21 (2013) A821A828.Google Scholar
Yu, P., Chang, C. H., Chiu, C. H., Yang, C. S., Yu, J. C., Kuo, H. C., Hsu, S. H., and Chang, Y. C., Adv. Mat. 21 (2009) 16181621.CrossRefGoogle Scholar
Lam, N. D., Kim, Y., Kim, K., Jung, K., Kang, H. K., and Lee, J., J. Cryst. Growth 370 (2013) 244248.Google Scholar
Yeh, L. K., Lai, K. Y., Lin, G. J., Fu, P. H., Chang, H. C., Lin, C. A., and Jr.He, H., Adv. Energy Mat. 1 (2011) 506510.Google Scholar
Yan, X., Poxson, D. J., Cho, J., Welser, R. E., Sood, A. K., Kim, J. K., and Schubert, E. F., Adv. Funct. Mat. 23 (2013) 583590.CrossRefGoogle Scholar
Li, H. X., Li, C. P., Hu, Z. D., Schaadt, D. M., Yu, E. T., J. Appl. Phys. 114 (2013) 43104317.Google Scholar
Hovhannisyan, A. S., J. Contemp Phys. 43 (2008) 136138.Google Scholar
Sai, P. H. V. S., Rao, J. V. R., Devarayapalli, K. C., and Sharma, K. V., Inter. J. Engg. Adv. Tech. 3 (2013) 396399.Google Scholar
Elfanaoui, A., Elhamri, E., Boulkaddat, L., Ihlal, A., Bouabid, K., Laanab, L., Taleb, A., and Portier, X., Inter. J. Hydro. Energy 36 (2011) 41304133.CrossRefGoogle Scholar
Ahn, Y. U., Kim, E. J., Kim, H. T., and Hahn, S. H., Mat. Lett. 57 (2003) 46604666.CrossRefGoogle Scholar
Frank, O., Zukalova, M., Laskova, B., Kurti, J., Koltaib, J., and Kavan, L., Phys. Chem. Chem. Phys. 14 (2012) 1456714572.CrossRefGoogle Scholar