Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T21:54:50.369Z Has data issue: false hasContentIssue false

DEPOSITION OF PbS THIN FILMS FROM LEAD HEXADECYL AND OCTADECYL XANTHATE COMPLEXES USING THE SPIN COATING METHOD

Published online by Cambridge University Press:  12 February 2019

Selina Ama Saah*
Affiliation:
Department of Chemical Sciences, University of Energy and Natural Resources, Sunyani-Ghana. Email:selinaamasaah@yahoo.com
Nathaniel Owusu Boadi
Affiliation:
Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana.
Christopher Wilkins
Affiliation:
School of Materials, University of Manchester, Manchester-United Kingdom.
Get access

Abstract

Lead sulphide thin films have been successfully deposited by spin coating lead hexadecyl and octadecyl xanthate onto glass substrates and annealed at moderate temperatures. The thin films were characterized using powder x-ray diffractometer (p-XRD) and were found to be face centred cubic (FCC) with the (200) being the most preferred orientation. The optical band gaps obtained were 0.93 and 1.00 eV respectively for PbS from complexes (1) and (2) annealed at 350 °C. They were all blue shifted from the bulk value of 0.41 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Afzaal, M., Ellwood, K., Pickett, N. L., O’Brien, P., Raftery, J., and Waters, J., J. Mater. Chem., 14, (8), 13101315, (2004).CrossRefGoogle Scholar
Remadevi, T. L. and Preetha, K. C., J. Mater. Sci. Mater. Electron., 23 (11), 20172023, (2012).CrossRefGoogle Scholar
Boadi, N. O., Mcnaughter, P. D., Helliwell, M., Malik, M. A., Awudza, J. A. M., and O’Brien, P., Inorganica Chim. Acta, 453, 439442, (2016).CrossRefGoogle Scholar
Sreekumari Nair, P., Radhakrishnan, T., Revaprasadu, N., and O’Brien, P., Mater. Sci. Technol., 21 (2), 237242, (2005).CrossRefGoogle Scholar
Afzaal, M. and O’Brien, P., J. Mater. Chem., 16 (12), 11131115, (2006).CrossRefGoogle Scholar
Larramendi, E. M., Calzadillaa, O., Gonzalez-Ariasa, A., Hernandez, E., and Ruiz-Garcia, J., Thin Solid Films, 389, 301306, (2001).CrossRefGoogle Scholar
De Iacovo, A., Venettacci, C., Colace, L., Scopa, L., and Foglia, S., IEEE Photonics Technol. Lett., 1135, 1–4, (2017).Google Scholar
Xiea, B. H., Fei, G. T., Xu, S. H., Gaoa, X. D., Zhang, J. X., and De Zhang, L., Mater. Chem. C, DOI: 10.1039/C7TC04884J, (2018).Google Scholar
Wang, N., Cao, X., Guo, L., Yang, S., and Wu, Z., ACS Nano, 2 (2), 184190, (2008).CrossRefGoogle Scholar
Giribabu, K., Suresh, R., Manigandan, R., Vijayalakshmi, L., Stephen, A., and Narayanan, V., Adv. Mater. Res., 584, 276279, (2012).CrossRefGoogle Scholar
Akhtar, J., Malik, M. A., O’Brien, P., and Helliwell, M., J. Mater. Chem., 20 (29), 61166124, (2010).CrossRefGoogle Scholar
Lewis, E. A., McNaughter, P. D., Yin, Z., Chen, Y., Brent, J. R., Saah, S. A., Raftery, J., Awudza, J. A. M., Malik, M. A., O’Brien, P., and Haigh, S. J., Chem. Mater., 27 (6), 21272136, (2015).CrossRefGoogle Scholar
Angeloski, A., Gentle, A. R., Scott, J. A., Cortie, M. B., Hook, J. M., Westerhausen, M. T., Bhadbhade, M., Baker, A. T., and McDonagh, A. M., Inorg. Chem., 57, 4, 2132-2140, (2018).CrossRefGoogle Scholar
Buckingham, M. A., Catherall, A. L., Hill, M. S., Johnson, A. L., and Parish, J. D., Cryst. Growth Des., 17 (2), 907912, (2017).CrossRefGoogle Scholar
Pullabhotla, V. S. R. R. and Ngcobo, M., Mater. Lett., 198, 156–159, (2017).CrossRefGoogle Scholar
McNaughter, P. D., Saah, S. A., Akhtar, M., Abdulwahab, K., Malik, M. A., Raftery, J., Awudza, J. A. M., and O’Brien, P., Dalt. Trans., 45 (41), 1634516353, (2016).CrossRefGoogle Scholar
Khan, A. H., Brescia, R., Polovitsyn, A., Angeloni, I., Martín-García, B., and Moreels, I., Chem. Mater., 29 (7), 28832889, (2017).CrossRefGoogle Scholar
Dilshad, M. K., Hameed, S., Haider, N., Afzal, A., Sportelli, M. C., Cioffi, N., Malik, M. A., Akhtar, J., Mater. Sci. Semicond. Process., 46, 3945, (2016).Google Scholar
Göde, F., Güneri, E., Emen, F. M., Kafadar, V. E., Ünlü, S., J. Lumin., 147, 4148, (2014).CrossRefGoogle Scholar
Kanniainen, T., Lindroos, S., Ihanus, J., and Leskela, M., J. Mater. Chem., 6 (2), 161164, (1996).CrossRefGoogle Scholar
Cant, D. J. H., Syres, K. L., Lunt, P. J. B., Radtke, H., Treacy, J., Thomas, P. J., Lewis, E. A., Haigh, S. J., O’Brien, P., Schulte, Karina, Bondino, F., Magnano, E., and Flavell, W. R. Langmuir, 31 (4), 14451453, (2015).CrossRefGoogle Scholar
Veena, E., Bangera, K. V., and Shivakumar, G. K., Mater. Sci. Eng. B, 223, 6469, (2017).CrossRefGoogle Scholar
Zhao, Y., Liao, X.-H., Hong, J.-M., and Zhu, J.-J., Mater. Chem. Phys., 87 (1), 149153, (2004).CrossRefGoogle Scholar
Saah, S. A., Mcnaughter, P. D., Malik, M. A., Awudza, J. A. M., Revaprasadu, N., and O’Brien, P., J. Mater. Sci., 53, 42834293, (2018).CrossRefGoogle Scholar
Al-Dulaimi, N., Lewis, D. J., Zhong, X. L., Malik, M. A., and O’Brien, P., J. Mater. Chem. C, 4 (12), 23122318, (2016).CrossRefGoogle Scholar
Fan, D., Thomas, P. J., and O’Brien, P., J. Mater. Chem., 17, 13811386, (2007).CrossRefGoogle Scholar
Thomas, P. J., Mbufu, E., and O’Brien, P., Chem. Comm., 49, 118--127, (2013).CrossRefGoogle Scholar
Al-Shakban, M., Matthews, P. D., Lewis, E. A., Raftery, J., Vitorica-Yrezabal, I., Haigh, S. J., Lewis, D. J., and O’Brien, P., J. Mater Sci., 54(3), 2315-2323, (2018).CrossRefGoogle Scholar
Ketchemen, K. I. Y., Khan, M. D., Mlowe, S., Nyamen, L. D., Ndifon, P. T., O’Brien, P. and Revaprasadu, N., J. Inorg. Organomet Polym. , 10.1007/s10904-018-01066-z, (2019).Google Scholar
Bakly, A. A. K., Spencer, B. F., and O’Brien, P., J Mater Sci ., 53:43604370, (2018).CrossRefGoogle Scholar
Rath, T., Maclachlan, A. J., Brown, M. D., and Haque, S. A., J. Mater. Chem. A, 3, 2415524162, (2015).CrossRefGoogle Scholar
Wang, J., Yao, K., Jia, Z., Wang, X., and Li, F., Superlattices Microstruct., 97, 378385, (2016).CrossRefGoogle Scholar
Moore, H. J., Colorado, R., Lee, H. J., Jamison, A. C., and Lee, T. R., Langmuir, 29, 1067410683, (2013).CrossRefGoogle Scholar
García-Aboal, R., Fenollosa, R., Ramiro-Manzano, F., Rodríguez, I., Meseguer, F., and Atienzar, P., ACS Omega, 3, 52295236, (2018).CrossRefGoogle Scholar
Nyamen, L. D., Rajasekhar Pullabhotla, V. S. R., Nejo, A. A., Ndifon, P. T., Warner, J. H., and Revaprasadu, N., Dalt. Trans., 41 (27), 82978302, (2012).CrossRefGoogle Scholar
Tshemese, Z., Khan, M. D., Mlowe, S., and Revaprasadu, N., Mater. Sci. Eng. B, 227, 116121, (2018).CrossRefGoogle Scholar
Song, C., Suna, M., Yina, Y., Xiaoa, J., Donga, W., Lia, C., Zhang, L., Mater. Res., 19 (6), 13511355, (2016).CrossRefGoogle Scholar
Mulik, R. N., Pawar, S. G., More, P. D., Pawar, S. A., and Patil, V. B., Arch. Appl. Sci. Res., 2 (4), 16, (2010).Google Scholar
Ali, H. M. and Saleh, S. A., Thin Solid Films, 556, 552559, (2014).CrossRefGoogle Scholar
Boadi, N. O., Malik, M. A., O’Brien, P., and Awudza, J. A. M., Dalt. Trans., 41 (35), 1049710506, (2012).CrossRefGoogle Scholar
Gayner, C. and Kar, K. K., J. App. Phy., 117, 103906, 1–9, (2015).Google Scholar
Khan, A. H., Ji, Q., Ariga, K., Thupakula, U., and Acharya, S., J. Mater. Chem., 21 (15), 56715676, (2011).CrossRefGoogle Scholar
Souza, F. L., Lopes, K. P., Nascente, P. P., and Leite, E. R., Sol. Energy Mater. Sol. Cells, 93 (3), 362368, (2009).CrossRefGoogle Scholar
Hussein, H., and Yazdani, A., 91, Mat. Sci. Semicon., 58–65, (2019).Google Scholar
Saah, S. A., Khan, M. D., McNaughter, P. D., Awudza, J. A. M., Revaprasadu, N. and O’Brien, P., New J. Chem, 42, 16602-16607, (2018).CrossRefGoogle Scholar