Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T01:23:19.571Z Has data issue: false hasContentIssue false

Doping of Two-Dimensional Semiconductors: A Rapid Review and Outlook

Published online by Cambridge University Press:  21 October 2019

Kehao Zhang*
Affiliation:
Department of Materials Science and Engineering and Center for Two Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA16802USA
Joshua Robinson
Affiliation:
Department of Materials Science and Engineering and Center for Two Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA16802USA Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, PA16802USA 2-Dimensional Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA16802USA
*
Get access

Abstract

Doping, as a primary technique to modify semiconductor transport, has achieved tremendous success in the past decades. For example, boron and phosphorus doping of Si modulates the dominant carrier type between p-type and n-type, serving as the backbone for the modern microelectronic technologies. Doped III-V semiconducting systems exhibit phenomenal optoelectronic properties. Magnesium doped gallium nitride plays an important role to build efficient blue light-emitting diode (LED), which won Nobel Prize in physics in 2014. The rise of two-dimensional (2D) materials sheds light on their potential in next generation electronic, optoelectronic, and quantum applications. These properties can further be controlled via doping of 2D materials, however, many challenges still remain in this field. Here, we present a rapid review on the recent achievements and challenges in the metastable and substitutional doping of 2D materials, followed by providing an outlook on integrating 2D materials into more advanced electronic architectures.

Type
Review Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jackson, K A and Schröter, W (Wolfgang) 2000 Handbook of semiconductor technology (Wiley-VCH)Google Scholar
Bhimanapati, G R, Lin, Z, Meunier, V, Jung, Y, Cha, J, Das, S, Xiao, D, Son, Y, Strano, M S, Cooper, V R, Liang, L, Louie, S G, Ringe, E, Zhou, W, Kim, S S, Naik, R R, Sumpter, B G, Terrones, H, Xia, F, Wang, Y, Zhu, J, Akinwande, D, Alem, N, Schuller, J A, Schaak, R E, Terrones, M and Robinson, J A 2015 Recent Advances in Two-Dimensional Materials beyond Graphene ACS Nano 9 11509–39CrossRefGoogle ScholarPubMed
Lin, Z, McCreary, A, Briggs, N, Subramanian, S, Zhang, K, Sun, Y, Li, X, Borys, N J, Yuan, H, Fullerton-Shirey, S K, Chernikov, A, Zhao, H, McDonnell, S, Lindenberg, A M, Xiao, K, LeRoy, B J, Drndić, M, Hwang, J C M, Park, J, Chhowalla, M, Schaak, R E, Javey, A, Hersam, M C, Robinson, J and Terrones, M 2016 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications 2D Mater . 3 042001CrossRefGoogle Scholar
Jariwala, D, Sangwan, V K, Lauhon, L J, Marks, T J and Hersam, M C 2014 Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8 1102–20CrossRefGoogle ScholarPubMed
Basov, D N, Averitt, R D and Hsieh, D 2017 Towards properties on demand in quantum materials Nat. Mater. 16 1077–88CrossRefGoogle ScholarPubMed
Briggs, N, Subramanian, S, Lin, Z, Li, X, Zhang, X, Zhang, K, Xiao, K, Geohegan, D, Wallace, R, Chen, L-Q, Terrones, M, Ebrahimi, A, Das, S, Redwing, J, Hinkle, C, Momeni, K, van Duin, A, Crespi, V, Kar, S and Robinson, J A 2019 A roadmap for electronic grade 2D materials 2D Mater . 6 022001CrossRefGoogle Scholar
Qian, X, Liu, J, Fu, L and Li, J 2014 Solid state theory. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346 1344–7CrossRefGoogle ScholarPubMed
Dean, C R, Wang, L, Maher, P, Forsythe, C, Ghahari, F, Gao, Y, Katoch, J, Ishigami, M, Moon, P, Koshino, M, Taniguchi, T, Watanabe, K, Shepard, K L, Hone, J and Kim, P 2013 Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497 598602CrossRefGoogle ScholarPubMed
Novoselov, K S, Geim, A K, Morozov, S V, Jiang, D, Katsnelson, M I, Grigorieva, I V, Dubonos, S V and Firsov, A A 2005 Two-dimensional gas of massless Dirac fermions in graphene. Nature 438 197200CrossRefGoogle ScholarPubMed
Tedstone, A A, Lewis, D J and O’Brien, P 2016 Synthesis, Properties, and Applications of Transition Metal-Doped Layered Transition Metal Dichalcogenides Chem. Mater. 28 1965–74CrossRefGoogle Scholar
Suh, J, Park, T-E, Lin, D-Y, Fu, D, Park, J, Jung, H J, Chen, Y, Ko, C, Jang, C, Sun, Y, Sinclair, R, Chang, J, Tongay, S and Wu, J 2014 Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett. 14 6976–82CrossRefGoogle ScholarPubMed
Laskar, M R, Nath, D N, Ma, L, Lee, E W, Lee, C H, Kent, T, Yang, Z, Mishra, R, Roldan, M A, Idrobo, J-C, Pantelides, S T, Pennycook, S J, Myers, R C, Wu, Y and Rajan, S 2014 p-type doping of MoS 2 thin films using Nb Appl. Phys. Lett. 104 092104CrossRefGoogle Scholar
Suh, J, Tan, T L, Zhao, W, Park, J, Lin, D-Y, Park, T-E, Kim, J, Jin, C, Saigal, N, Ghosh, S, Wong, Z M, Chen, Y, Wang, F, Walukiewicz, W, Eda, G and Wu, J 2018 Reconfiguring crystal and electronic structures of MoS2 by substitutional doping Nat. Commun. 9 199CrossRefGoogle ScholarPubMed
Mouri, S, Miyauchi, Y and Matsuda, K 2013 Tunable photoluminescence of monolayer MoS2 via chemical doping Nano Lett . 13 5944–8CrossRefGoogle ScholarPubMed
Ly, T H, Deng, Q, Doan, M H, Li, L-J and Zhao, J 2018 Facile Doping in Two-Dimensional Transition-Metal Dichalcogenides by UV Light ACS Appl. Mater. Interfaces 10 29893–901CrossRefGoogle ScholarPubMed
Tongay, S, Zhou, J, Ataca, C, Liu, J, Kang, J S, Matthews, T S, You, L, Li, J, Grossman, J C and Wu, J 2013 Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating Nano Lett . 13 2831–6CrossRefGoogle ScholarPubMed
Amani, M, Lien, D-H, Kiriya, D, Xiao, J, Azcatl, a., Noh, J, Madhvapathy, S R, Addou, R, Kc, S, Dubey, M, Cho, K, Wallace, R M, Lee, S-C, He, J-H, Ager, J W, Zhang, X, Yablonovitch, E and Javey, a. 2015 Near-unity photoluminescence quantum yield in MoS2 Science (80-. ) . 350 1065–8CrossRefGoogle Scholar
Lien, D-H, Uddin, S Z, Yeh, M, Amani, M, Kim, H, Ager, J W, Yablonovitch, E and Javey, A 2019 Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364 468–71CrossRefGoogle ScholarPubMed
Amani, M, Taheri, P, Addou, R, Ahn, G H, Kiriya, D, Lien, D-H, Ager, J W, Wallace, R M and Javey, A 2016 Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides Nano Lett. 16 2786–91CrossRefGoogle ScholarPubMed
Amani, M, Burke, R A, Ji, X, Zhao, P, Lien, D-H, Taheri, P, Ahn, G H, Kirya, D, Ager, J W, Yablonovitch, E, Kong, J, Dubey, M and Javey, A 2016 High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition ACS Nano 10 6535–41CrossRefGoogle ScholarPubMed
Fang, H, Tosun, M, Seol, G, Chang, T C, Takei, K, Guo, J and Javey, A 2013 Degenerate n-Doping of Few-Layer Transition Metal Dichalcogenides by Potassium Nano Lett . 13 1991–5CrossRefGoogle ScholarPubMed
Fang, H, Chuang, S, Chang, T C, Takei, K, Takahashi, T and Javey, A 2012 High-Performance Single Layered WSe 2 p-FETs with Chemically Doped Contacts Nano Lett. 12 3788–92CrossRefGoogle ScholarPubMed
Xu, K, Lu, H, Kinder, E W, Seabaugh, A and Fullerton-Shirey, S K 2017 Monolayer Solid-State Electrolyte for Electric Double Layer Gating of Graphene Field-Effect Transistors ACS Nano 11 5453–64CrossRefGoogle ScholarPubMed
Wang, F, Stepanov, P, Gray, M, Lau, C N, Itkis, M E and Haddon, R C 2015 Ionic Liquid Gating of Suspended MoS 2 Field Effect Transistor Devices Nano Lett . 15 5284–8CrossRefGoogle Scholar
Buscema, M, Steele, G A, van der Zant, H S J and Castellanos-Gomez, A 2014 The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS2 Nano Res. 7 561–71CrossRefGoogle Scholar
Chakraborty, B, Bera, A, Muthu, D V S, Bhowmick, S, Waghmare, U V. and Sood, a. K 2012 Symmetry-dependent phonon renormalization in monolayer MoS 2 transistor Phys. Rev. B - Condens. Matter Mater. Phys. 85 25CrossRefGoogle Scholar
Schneider, L M, Lippert, S, Kuhnert, J, Renaud, D, Kang, K N, Ajayi, O, Halbich, M-U, Abdulmunem, O M, Lin, X, Hassoon, K, Edalati-Boostan, S, Kim, Y D, Heimbrodt, W, Yang, E H, Hone, J C and Rahimi-Iman, A 2018 The Impact of the Substrate Material on the Optical Properties of 2D WSe2 Monolayers Semiconductors 52 565–71CrossRefGoogle Scholar
Huang, Y L, Chen, Y, Zhang, W, Quek, S Y, Chen, C-H, Li, L-J, Hsu, W-T, Chang, W-H, Zheng, Y J, Chen, W and Wee, A T S 2015 Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 6 6298CrossRefGoogle ScholarPubMed
Yang, Q, Fang, J, Zhang, G and Wang, Q 2018 Effect of substrate and temperature on the electronic properties of monolayer molybdenum disulfide field-effect transistors Phys. Lett. A 382 697703CrossRefGoogle Scholar
Ma, N and Jena, D 2014 Charge Scattering and Mobility in Atomically Thin Semiconductors Phys. Rev. X 4 011043Google Scholar
Divya Bharathi, N and Sivasankaran, K 2019 Performance analysis of a substrate-engineered monolayer MoS2 field-effect transistor J. Comput. Electron. 18 146–54CrossRefGoogle Scholar
Wasey, A H M A, Chakrabarty, S and Das, G P 2014 Substrate induced modulation of electronic, magnetic and chemical properties of MoSe 2 monolayer AIP Adv . 4 047107CrossRefGoogle Scholar
Zhao, R, Grisafe, B, Ghosh, R K, Wang, K, Datta, S and Robinson, J 2019 Stabilizing the commensurate charge-density wave in 1T-tantalum disulfide at higher temperatures via potassium intercalation Nanoscale 11 6016–22CrossRefGoogle ScholarPubMed
Dumcenco, D, Ovchinnikov, D, Marinov, K, Lazić, P, Gibertini, M, Marzari, N, Sanchez, O L, Kung, Y-C, Krasnozhon, D, Chen, M-W, Bertolazzi, S, Gillet, P, Fontcuberta i Morral, A, Radenovic, A and Kis, A 2015 Large-Area Epitaxial Monolayer MoS 2 ACS Nano 9 4611–20CrossRefGoogle Scholar
Zhang, X, Zhang, F, Wang, Y, Schulman, D S, Zhang, T, Bansal, A, Alem, N, Das, S, Crespi, V H, Terrones, M and Redwing, J M 2019 Defect-Controlled Nucleation and Orientation of WSe 2 on hBN: A Route to Single-Crystal Epitaxial Monolayers ACS Nano 13 3341–52CrossRefGoogle Scholar
Zhang, K, Borys, N J, Bersch, B M, Bhimanapati, G R, Xu, K, Wang, B, Wang, K, Labella, M, Williams, T A, Haque, M A, Barnard, E S, Fullerton-Shirey, S, Schuck, P J and Robinson, J A 2017 Deconvoluting the Photonic and Electronic Response of 2D Materials: The Case of MoS2 Sci. Rep. 7 16938CrossRefGoogle Scholar
Yang, S-Z, Gong, Y, Manchanda, P, Zhang, Y-Y, Ye, G, Chen, S, Song, L, Pantelides, S T, Ajayan, P M, Chisholm, M F and Zhou, W 2018 Rhenium-Doped and Stabilized MoS 2 Atomic Layers with Basal-Plane Catalytic Activity Adv. Mater. 30 1803477CrossRefGoogle Scholar
Dolui, K, Rungger, I, Pemmaraju, C Das and Sanvito, S 2013 Possible doping strategies for MoS 2 monolayers: An ab initio study Phys. Rev. B 88CrossRefGoogle Scholar
Kochat, V, Apte, A, Hachtel, J A, Kumazoe, H, Krishnamoorthy, A, Susarla, S, Idrobo, J C, Shimojo, F, Vashishta, P, Kalia, R, Nakano, A, Tiwary, C S and Ajayan, P M 2017 Re Doping in 2D Transition Metal Dichalcogenides as a New Route to Tailor Structural Phases and Induced Magnetism Adv. Mater. 29 1703754CrossRefGoogle ScholarPubMed
Zhang, K, Feng, S, Wang, J, Azcatl, A, Lu, N, Addou, R, Wang, N, Zhou, C, Lerach, J, Bojan, V, Kim, M J, Chen, L-Q, Wallace, R M, Terrones, M, Zhu, J and Robinson, J a. 2015 Manganese Doping of Monolayer MoS 2: The Substrate Is Critical Nano Lett. 150911072333000CrossRefGoogle Scholar
Ramasubramaniam, A and Naveh, D 2013 Mn-doped monolayer MoS2: An atomically thin dilute magnetic semiconductor Phys. Rev. B - Condens. Matter Mater. Phys. 87 17CrossRefGoogle Scholar
Enyashin, A N, Yadgarov, L, Houben, L, Popov, I, Weidenbach, M, Tenne, R, Bar-Sadan, M and Seifert, G 2011 New Route for Stabilization of 1T-WS 2 and MoS 2 Phases J. Phys. Chem. C 115 24586–91CrossRefGoogle Scholar
Zhang, K, Bersch, B M, Joshi, J, Addou, R, Cormier, C R, Zhang, C, Xu, K, Briggs, N C, Wang, K, Subramanian, S, Cho, K, Fullerton-Shirey, S, Wallace, R M, Vora, P M and Robinson, J A 2018 Tuning the Electronic and Photonic Properties of Monolayer MoS2 via In Situ Rhenium Substitutional Doping Adv. Funct. Mater. 1706950CrossRefGoogle Scholar
Hallam, T, Monaghan, S, Gity, F, Ansari, L, Schmidt, M, Downing, C, Cullen, C P, Nicolosi, V, Hurley, P K and Duesberg, G S 2017 Rhenium-doped MoS 2 films Appl. Phys. Lett. 111 203101CrossRefGoogle Scholar
Li, X, Puretzky, A A, Sang, X, Santosh, K C, Tian, M, Ceballos, F, Mahjouri-Samani, M, Wang, K, Unocic, R R, Zhao, H, Duscher, G, Cooper, V R, Rouleau, C M, Geohegan, D B and Xiao, K 2017 Suppression of Defects and Deep Levels Using Isoelectronic Tungsten Substitution in Monolayer MoSe2 Adv. Funct. Mater. 27 1603850CrossRefGoogle Scholar
Li, X, Lin, M-W, Basile, L, Hus, S M, Puretzky, A A, Lee, J, Kuo, Y-C, Chang, L-Y, Wang, K, Idrobo, J C, Li, A-P, Chen, C-H, Rouleau, C M, Geohegan, D B and Xiao, K 2016 Isoelectronic Tungsten Doping in Monolayer MoSe 2 for Carrier Type Modulation Adv. Mater. 28 8240–7CrossRefGoogle Scholar
Duan, X, Wang, C, Fan, Z, Hao, G, Kou, L, Halim, U, Li, H, Wu, X, Wang, Y, Jiang, J, Pan, A, Huang, Y, Yu, R and Duan, X 2016 Synthesis of WS 2 x Se 2–2 x Alloy Nanosheets with Composition-Tunable Electronic Properties Nano Lett . 16 264–9CrossRefGoogle Scholar
Gao, J, Kim, Y D, Liang, L, Idrobo, J C, Chow, P, Tan, J, Li, B, Li, L, Sumpter, B G, Lu, T-M, Meunier, V, Hone, J and Koratkar, N 2016 Transition-Metal Substitution Doping in Synthetic Atomically Thin Semiconductors Adv. Mater. 28 9735–43CrossRefGoogle ScholarPubMed
Tan, H, Hu, W, Wang, C, Ma, C, Duan, H, Yan, W, Cai, L, Guo, P, Sun, Z, Liu, Q, Zheng, X, Hu, F and Wei, S 2017 Intrinsic Ferromagnetism in Mn-Substituted MoS 2 Nanosheets Achieved by Supercritical Hydrothermal Reaction Small 13 1701389CrossRefGoogle Scholar
Azcatl, A, Qin, X, Prakash, A, Zhang, C, Cheng, L, Wang, Q, Lu, N, Kim, M J, Kim, J, Cho, K, Addou, R, Hinkle, C L, Appenzeller, J and Wallace, R M 2016 Covalent Nitrogen Doping and Compressive Strain in MoS 2 by Remote N 2 Plasma Exposure Nano Lett. 16 5437–43CrossRefGoogle Scholar
Khosravi, A, Addou, R, Smyth, C M, Yue, R, Cormier, C R, Kim, J, Hinkle, C L and Wallace, R M 2018 Covalent nitrogen doping in molecular beam epitaxy-grown and bulk WSe 2 APL Mater . 6 026603CrossRefGoogle Scholar
Yang, Q, Wang, Z, Dong, L, Zhao, W, Jin, Y, Fang, L, Hu, B and Dong, M 2019 Activating MoS 2 with Super-High Nitrogen-Doping Concentration as Efficient Catalyst for Hydrogen Evolution Reaction J. Phys. Chem. C 123 10917–25CrossRefGoogle Scholar
Qin, S, Lei, W, Liu, D and Chen, Y 2015 In-situ and tunable nitrogen-doping of MoS2 nanosheets Sci. Rep. 4 7582CrossRefGoogle Scholar
Dolui, K, Rungger, I and Sanvito, S 2013 Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate Phys. Rev. B - Condens. Matter Mater. Phys. 87 17CrossRefGoogle Scholar
Singh, A and Singh, A K 2019 Origin of n -type conductivity of monolayer MoS 2 Phys. Rev. B 99 121201CrossRefGoogle Scholar
Pandey, S K, Alsalman, H, Azadani, J G, Izquierdo, N, Low, T and Campbell, S A 2018 Controlled p-type substitutional doping in large-area monolayer WSe 2 crystals grown by chemical vapor deposition Nanoscale 10 21374–85CrossRefGoogle Scholar
Jin, Z, Cai, Z, Chen, X and Wei, D 2018 Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment Nano Res. 11 4923–30CrossRefGoogle Scholar
Wen, W, Zhu, Y, Liu, X, Hsu, H-P, Fei, Z, Chen, Y, Wang, X, Zhang, M, Lin, K-H, Huang, F-S, Wang, Y-P, Huang, Y-S, Ho, C-H, Tan, P-H, Jin, C and Xie, L 2017 Anisotropic Spectroscopy and Electrical Properties of 2D ReS 2(1- x ) Se 2 x Alloys with Distorted 1T Structure Small 13 1603788CrossRefGoogle Scholar
Zhang, M, Wu, J, Zhu, Y, Dumcenco, D O, Hong, J, Mao, N, Deng, S, Chen, Y, Yang, Y, Jin, C, Chaki, S H, Huang, Y-S, Zhang, J and Xie, L 2014 Two-Dimensional Molybdenum Tungsten Diselenide Alloys: Photoluminescence, Raman Scattering, and Electrical Transport ACS Nano 8 7130–7CrossRefGoogle ScholarPubMed
Chen, Y, Xi, J, Dumcenco, D O, Liu, Z, Suenaga, K, Wang, D, Shuai, Z, Huang, Y-S and Xie, L 2013 Tunable Band Gap Photoluminescence from Atomically Thin Transition-Metal Dichalcogenide Alloys ACS Nano 7 4610–6CrossRefGoogle ScholarPubMed
Feng, Q, Mao, N, Wu, J, Xu, H, Wang, C, Zhang, J and Xie, L 2015 Growth of MoS 2(1– x ) Se 2 x ( x = 0.41–1.00) Monolayer Alloys with Controlled Morphology by Physical Vapor Deposition ACS Nano 9 7450–5CrossRefGoogle ScholarPubMed
Rhodes, D, Chenet, D A, Janicek, B E, Nyby, C, Lin, Y, Jin, W, Edelberg, D, Mannebach, E, Finney, N, Antony, A, Schiros, T, Klarr, T, Mazzoni, A, Chin, M, Chiu, Y –., Zheng, W, Zhang, Q R, Ernst, F, Dadap, J I, Tong, X, Ma, J, Lou, R, Wang, S, Qian, T, Ding, H, Osgood, R M, Paley, D W, Lindenberg, A M, Huang, P Y, Pasupathy, A N, Dubey, M, Hone, J and Balicas, L 2017 Engineering the Structural and Electronic Phases of MoTe 2 through W Substitution Nano Lett. 17 1616–22CrossRefGoogle Scholar
Wang, J, Sun, F, Yang, S, Li, Y, Zhao, C, Xu, M, Zhang, Y and Zeng, H 2016 Robust ferromagnetism in Mn-doped MoS 2 nanostructures Appl. Phys. Lett. 109 092401CrossRefGoogle Scholar
Huang, J-K, Pu, J, Hsu, C-L, Chiu, M-H, Juang, Z-Y, Chang, Y-H, Chang, W-H, Iwasa, Y, Takenobu, T and Li, L-J 2013 Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano 1Google Scholar
Lee, Y-H, Zhang, X-Q, Zhang, W, Chang, M-T, Lin, C-T, Chang, K-D, Yu, Y-C, Wang, J T-W, Chang, C-S, Li, L-J and Lin, T-W 2012 Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24 2320–5CrossRefGoogle ScholarPubMed
Kang, K, Xie, S, Huang, L, Han, Y, Huang, P Y, Mak, K F, Kim, C-J, Muller, D and Park, J 2015 High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity Nature 520 656–60CrossRefGoogle ScholarPubMed
Zhou, H, Wang, C, Shaw, J C, Cheng, R, Chen, Y, Huang, X, Liu, Y, Weiss, N O, Lin, Z, Huang, Y and Duan, X 2015 Large area growth and electrical properties of p-type WSe2 atomic layers. Nano Lett. 15 709–13CrossRefGoogle ScholarPubMed
Jeanjean, P, Sellitto, P, Sicart, J, Robert, J L, Chaussemy, G and Laugier, A 1991 Dopant activation and Hall mobility in B- and As-implanted polysilicon films after rapid or conventional thermal annealing Semicond. Sci. Technol. 6 1130–4CrossRefGoogle Scholar
Pelaz, L, Venezia, V C, Gossmann, H-J, Gilmer, G H, Fiory, A T, Rafferty, C S, Jaraiz, M and Barbolla, J 1999 Activation and deactivation of implanted B in Si Appl. Phys. Lett. 75 662–4CrossRefGoogle Scholar
Luo, P, Zhuge, F, Zhang, Q, Chen, Y, Lv, L, Huang, Y, Li, H and Zhai, T 2019 Doping engineering and functionalization of two-dimensional metal chalcogenides Nanoscale Horizons 4 2651CrossRefGoogle Scholar
Xu, W, Huang, B, Li, P, Li, F, Zhang, C and Wang, P 2014 The electronic structure and optical properties of Mn and B, C, N co-doped MoS2 monolayers Nanoscale Res. Lett. 9 554CrossRefGoogle Scholar
Huang, C, Jin, Y, Wang, W, Tang, L, Song, C and Xiu, F 2017 Manganese and chromium doping in atomically thin MoS 2 J. Semicond. 38 033004CrossRefGoogle Scholar
Lin, Y-C, Jariwala, B, Bersch, B M, Xu, K, Nie, Y, Wang, B, Eichfeld, S M, Zhang, X, Choudhury, T H, Pan, Y, Addou, R, Smyth, C M, Li, J, Zhang, K, Haque, M A, Fölsch, S, Feenstra, R M, Wallace, R M, Cho, K, Fullerton-Shirey, S K, Redwing, J M and Robinson, J A 2018 Realizing Large-Scale, Electronic-Grade Two-Dimensional Semiconductors ACS Nano 12 965–75CrossRefGoogle ScholarPubMed
Zhang, K, Bersch, B M, Zhang, F, Briggs, N C, Subramanian, S, Xu, K, Chubarov, M, Wang, K, Lerach, J O, Redwing, J M, Fullerton-Shirey, S K, Terrones, M and Robinson, J A 2018 Considerations for Utilizing Sodium Chloride in Epitaxial Molybdenum Disulfide ACS Appl. Mater. Interfaces 10 40831–7CrossRefGoogle ScholarPubMed
Yang, P, Zou, X, Zhang, Z, Hong, M, Shi, J, Chen, S, Shu, J, Zhao, L, Jiang, S, Zhou, X, Huan, Y, Xie, C, Gao, P, Chen, Q, Zhang, Q, Liu, Z and Zhang, Y 2018 Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass Nat. Commun. 9 979CrossRefGoogle Scholar
Bao, W, Borys, N J, Ko, C, Suh, J, Fan, W, Thron, A, Zhang, Y, Buyanin, A, Zhang, J, Cabrini, S, Ashby, P D, Weber-Bargioni, A, Tongay, S, Aloni, S, Ogletree, D F, Wu, J, Salmeron, M B and Schuck, P J 2015 Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide Nat Commun 6 17CrossRefGoogle ScholarPubMed
Borys, N J, Barnard, E S, Gao, S, Yao, K, Bao, W, Buyanin, A, Zhang, Y, Tongay, S, Ko, C, Suh, J, Weber-Bargioni, A, Wu, J, Yang, L and Schuck, P J 2017 Anomalous Above-Gap Photoexcitations and Optical Signatures of Localized Charge Puddles in Monolayer Molybdenum Disulfide ACS Nano 11 2115–23CrossRefGoogle ScholarPubMed
Kastl, C, Koch, R J, Chen, C T, Eichhorn, J, Ulstrup, S, Bostwick, A, Jozwiak, C, Kuykendall, T R, Borys, N J, Toma, F M, Aloni, S, Weber-Bargioni, A, Rotenberg, E and Schwartzberg, A M 2019 Effects of Defects on Band Structure and Excitons in WS 2 Revealed by Nanoscale Photoemission Spectroscopy ACS Nano acsnano.8b06574CrossRefGoogle Scholar
Kastl, C, Chen, C T, Koch, R J, Schuler, B, Kuykendall, T R, Bostwick, A, Jozwiak, C, Seyller, T, Rotenberg, E, Aloni, S and Schwartzberg, A M 2018 Multimodal spectromicroscopy of monolayer WS 2 enabled by ultra-clean van der Waals epitaxy 2D Mater . 5 045010CrossRefGoogle Scholar