Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T13:39:16.095Z Has data issue: false hasContentIssue false

First Principles Study of the Structure and Elastic Properties of Thorium Metal

Published online by Cambridge University Press:  13 July 2016

Jacob K. Startt*
Affiliation:
Nuclear and Radiological Programs, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta. GA 30332, U.S.A.
Chaitanya S. Deo
Affiliation:
Nuclear and Radiological Programs, George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta. GA 30332, U.S.A.
*
Get access

Abstract

Thorium has long been considered a possible source of fuel for use in power generating nuclear reactors. While much attention and interest have focused on thorium oxide, metallic thorium alloys were investigated in the past as fuel candidates for fast and thermal breeder reactors. In this work, thorium’s two solid allotropes (face centered cubic α and body centered cubic β) are modelled using Density Functional Theory (DFT). The Vienna Ab Initio Simulation Package (VASP) is used to determine structural and elastic properties, as well as the density of states. The Voigt-Reuss-Hill approximations are used to predict the phases’ bulk moduli, shear moduli, Young’s moduli, and Poisson’s ratios. Four exchange-correlation potentials are used and compared. These are the LDA, the PBE-GGA, the RPBE, and the PBEsol. All potentials showed relatively good accuracy when predicting the lattice constant. The RPBE was the most accurate, slightly over predicting by < 0.2%. The RPBE and the PBE-GGA were the most accurate in predicting elastic properties, performing almost equally, while slightly over predicting most values.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Clayton, J.C., Westinghouse Bettis Atomic Power Laboratory WAPD-T-3007 (1993).Google Scholar
Babyak, W.J., Freeman, L.B., Raab, H.F., Nuclear News, pp. 114116 (1988).Google Scholar
Şahin, S., Yalçın, Ş., Yıldız, K., Şahin, H. M., Acır, A., and Şahin, N., Ann. Nuc. Energy. 35, 690703 (2008).Google Scholar
Yu, J., Wang, K, and Sollychin, R., Prog. Nucl. Energy. 45, 7184 (2004).Google Scholar
Wilson, P. D. and Ainsworth, K. F., International Atomic Energy Agency IAEA-TECDOC–1319 (2002).Google Scholar
Shiroya, S., Unesaki, H. and Misawa, T., International Atomic Energy Agency IAEA-TECDOC–1319 (2002).Google Scholar
Kang, J., Von Hippel, F. N., Science & Global Security 9, 1, pp. 132, (2001).Google Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864, (1964).CrossRefGoogle Scholar
Kohn, W., Sham, L., Phys. Rev. 140, A1133, (1965).Google Scholar
Carlson, O. N., Stevens, E. R., 17, 3, pp. 439446, (1971).Google Scholar
Vohra, Y. K. and Akella, J., Phys. Rev. Let. 67, 25, pp. 35633566 (1991).Google Scholar
Wills, J. M. and Eriksson, O., Physical Review B, 3, 45, 24 pp. 1387913890, (1992)Google Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B, 54, 11169, (1996).Google Scholar
Kresse, G. and Joubert, D., Phys. Rev. B, 59, 1758, (1999).Google Scholar
Blochl, P., Phys. Rev. B, 50, 17953, (1994).Google Scholar
Blochl, P., Jepsen, O. and Anderson, O., Phys. Rev. B, 49, 16223, (1994).Google Scholar
Perdew, J., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77, 3865, (1996).Google Scholar
Hammer, B., Hansen, L.B. and Norskov, J.K., Phys. Rev. B 59, 7413, (1999).Google Scholar
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X., and Burke, K., Phys. Rev. Lett. 100, 136406 (2008).Google Scholar
Methfessel, M., Paxton, A., Phys. Rev. B, 40, 3616, (1989).Google Scholar
Hill, R., Proc. Phys. Soc., 65, 349, (1952).Google Scholar
Peterson, D. E., Bulletin of Phase Diagrams, 3, 2, pp.275276, (1982).Google Scholar
Armstrong, P. E., Carlson, O. N., and Smith, J. F., Journal of Applied Physics, 30, 1, pp. 3641 (1959).Google Scholar