Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T20:42:18.118Z Has data issue: false hasContentIssue false

Gas Sensor Devices based on CuO- and ZnO- Nanowires directly synthesized on silicon substrate

Published online by Cambridge University Press:  07 April 2016

R. Wimmer-Teubenbacher*
Affiliation:
Materials for Microelectronics, Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
E. Lackner
Affiliation:
Materials for Microelectronics, Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
J. Krainer
Affiliation:
Materials for Microelectronics, Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
S. Steinhauer
Affiliation:
Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Onna-Son, Okinawa 904-0495, Japan
A. Koeck
Affiliation:
Materials for Microelectronics, Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
Get access

Abstract

In-situ grown CuO and ZnO nanowire (NW) arrays were evaluated for their gas sensing performance. The metal structures were fabricated by standard e-beam lithography, thermal evaporation and lift-off process onto a silicon substrate with gold electrodes. After integration onto a test structure with resistive heater and thermocouple for temperature control, the samples were thermally oxidized at 400°C. During thermal oxidation, nanowires were grown between the oxidized metal structures. The gas sensing performance of the NW array was tested for carbon monoxide, - and a hydrocarbon-mixture (acetylene, ethane, ethene, and propene) at three relative humidity levels.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meixner, H., Gerblinger, J., Lampe, U. and Fleischer, M., Thin-film gas sensors based on semiconducting metal oxides, Sensors and Actuators B 23, pp. 119125, 1995.Google Scholar
Tischner, A., Maier, T., Stepper, C. und Köck, A., Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide, Sensors and Actuators B, Nr. 134, pp. 796802, 2008.Google Scholar
Steinhauer, S., Brunnet, E., Maier, T., Mutinati, G., Koeck, A., Freudenberg, O., Gspan, C., Grogger, W., Neuhold, A. und Resel, R., Gas sensing properties of novel CuO nanowire devices, Sensors and Actuators B: Chemical, pp. 5057, 2013.Google Scholar
Köck, A., Chitu, L., Defregger, S., Kraker, E., Maier, G., Steinhauer, S. und Wimmer-Teubenbacher, R., Metal Oxide Nanowires for Gas Sensor Applications, BHM Berg- und Hüttenmännische Monatshefte, Nr. 159, pp. 385389, 2014.Google Scholar
Bin Tanvir, N., Wilbertz, C., Steinhauer, S., Koeck, A., Urban, G. und Yurchenko, O., Work function based CO2 gas sensing using metal oxide nanoparticles at room temperature, in nanoFIS 2014 - Functional Integrated nanoSystems, Graz, 2015.Google Scholar
Deb, B., Desai, S., Sumanasekera, G. und Sunkara, M., Gas sensing behaviour of mat-like networked tungsten oxide nanowire thin films, Nanotechnology, Bd. 18, Nr. 28, 2007.Google Scholar
Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A. und Sberveglieri, G., Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors, Progress in Materials Science, pp. 167, 2009.Google Scholar
Wu, C., Shen, L., Yu, H., Zhang, Y. und Huang, Q., Solvothermal synthesis of Cu-doped ZnO nanowires with visible light driven photocatalytic activity, Materials Letters, pp. 236238, 2012.Google Scholar
Barsan, N., Schweizer-Berberich, M. und Göpel, W., Fundamental and practical aspects in design of nanoscaled SnO2 gas sensors: a status report, Fresenius' Journal of Analytical Chemistry, Bd. 365, Nr. 4, pp. 287304, October 1999.Google Scholar
Steinhauer, S., Gas Sensing Properties of Metal Oxide Nanowires and their CMOS Integration, Vienna: Vienna University of Technology, 2014.Google Scholar
Kim, Y.-S., Hwang, I.-S., Kim, S.-J., Lee, C.-Y. und Lee, J.-H., CuO nanowire gas sensors for air quality control in automotive cabin, Sensors and Actuators B: Chemical, pp. 298303, 2008.Google Scholar
Rai, P., Khan, R., Ahmad, R., Hahn, Y.-B. und Lee, I.-H. Y. Y.-T., Gas sensing properties of single crystalline ZnO nanowires grown by thermal evaporation technique, Current Applied Physics, pp. 17691773, 2013.Google Scholar
Chang, S.-J., Hsueh, T.-J., Chen, I.-C. und Huang, B.-R., Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles, Nanotechnology, 2008.Google Scholar
Fan, Z. und Lu, J. G., Zinc Oxide Nanostructures: Synthesis and Properties, Journal of Nanoscience and Nanotechnology, pp. 15611573, 10 2005.Google Scholar
Baxter, J. B. und Schmuttenmaer, C. A., Conductivity of ZnO Nanowires, Nanoparticles, and Thin Films Using Time-Resolved Terahertz Spectroscopy, Journal of Physical Chemistry B, pp. 2522925239, 2006.Google Scholar
Luo, L.-B., Wang, X.-H., Xie, C., Li, Z.-J., Lu, R., Yang, X.-B. und Lu, J., One-dimensional CuO nanowire: synthesis, electrical and optoelectronic devices application, Nanoscale Research Letters, 9(1), Nr. 637, 2014.Google Scholar
Li, D., Hu, J., Wu, R. und Lu, J. G., Conductometric chemical sensor based on individual CuO nanowires, Nanotechnology , 2010.Google Scholar