Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-04T23:25:29.441Z Has data issue: false hasContentIssue false

Highly Sensitive Organic Photoconductor Using BoronSub-2,3-naphthalocyanine as a Red-sensitive Film for Stack-type ImageSensors

Published online by Cambridge University Press:  28 December 2015

Toshikatsu Sakai*
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Hokuto Seo
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Tomomi Takagi
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Hiroshi Ohtake
Affiliation:
NHK Science and Technology Research Laboratories, 1-10-15 Kinuta, Setagaya-ku, Tokyo, Japan.
Get access

Abstract

Boron sub-2,3-naphthalocyanine chloride (SubNc) was investigated as a potentialred-sensitive organic photoconductive film (OPF). A photoconductive cell wasfabricated, and its current–voltage characteristics, both with andwithout light irradiation, and external quantum efficiency (EQE) weredetermined. The structure of the photoconductive cell was as follows, withthicknesses in nm given in parentheses: glasssubstrate/In–Zn–O (100)/spiro-2CBP (30)/SubNc(50)/Alq3 (30)/Al (50) (spiro-2CBP =2,7-bis(carbazol-9-yl)-9,9-spirobifluorene; Alq3 =tris(8-hydroxyquinolinato)aluminum). The spiro-2CBP and Alq3 layerswere inserted between the SubNc layer and the electrodes to block dark currentinjection. The three organic layers were successively deposited by evaporationin a vacuum on the In–Zn–O-patterned substrate. SubNc filmabsorbed light in the red region well, with an absorption peak at 695 nm. TheEQE of the cell reached 80% when the applied bias was 15 V. In addition, theblocking layers effectively suppressed dark current in the OPF, whichcorresponded to a current density of 20 nA/cm2 at 15 V. These resultsindicate that SubNc is a promising candidate as a red-sensitive OPF.

Information

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
Oregan, B. and Gratzel, M., Nature, 353, 737 (1991).Google Scholar
Yu, G., Gao, J., Hummelen, J. C., Wudl, F., and Heeger, A. J., Science, 270, 1789 (1995).Google Scholar
Small, C. E., Chen, S., Subbiah, J., Amb, C. M., Tsang, S. W., Lai, T. H., and Reynolds, J. R., Nat. Photonics., 6, 115 (2012).Google Scholar
Li, G., Zhu, R., and Yang, Y., Nat. Photonics., 6, 153 (2012).Google Scholar
Zukawa, T., Naka, S., Okada, H., and Onnagawa, H., J. Appl. Phys., 91, 1171 (2002).Google Scholar
Kudo, K. and Moriizumi, T., Appl. Phys. Lett., 39, 609 (1981).Google Scholar
Street, R. A., Mulato, M., Lau, R., Ho, J., Graham, J., Popovic, Z., and Hor, J., Appl. Phys. Lett., 78, 4193 (2001).Google Scholar
Nausieda, I., Ryu, K., Kymissis, I., Akinwande, A. I., Bulovic, V., and Sodini, C. G., IEEE Trans. Electron Devices, 55, 527 (2008).Google Scholar
Aihara, S., Hirano, Y., Tajima, T., Tanioka, K., Abe, M., Saito, N., Kamata, N., and Terunuma, D., Appl. Phys. Lett., 82, 511 (2003).Google Scholar
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Kubota, M., and Egami, N., Jpn. J. Appl. Phys., 46 L1240 (2007).Google Scholar
Aihara, S., Seo, S, H., Namba, M., Watabe, T., Ohtake, H., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., Furuta, M., Nitta, H., and Hirao, T., IEEE Trans. Electron Devices, 56, 2570 (2009).Google Scholar
Seo, H., Aihara, S., Watabe, T., Ohtake, H., Sakai, T., Kubota, M., Egami, N., Hiramatsu, T., Matsuda, T., Furuta, M., and Hirao, T., Jpn. J. Appl. Phys., 50, 024103 (2011).Google Scholar
Verreet, B., Schols, S., Cheyns, D., Rand, B. P., Gommans, H., Aernouts, T., Heremans, P., and Genoe, J., J. Mater. Chem., 19, 5295 (2009).Google Scholar
Cheyns, D., Rand, B. P., and Heremans, P., Appl. Phys. Lett., 97, 033301 (2010).Google Scholar
Chen, G., Sasabe, H., Sano, T., Wang, X. F., Hong, Z., Kido, J., and Yang, Y., Nanotechnology, 24, 484007 (2013).Google Scholar