Skip to main content
×
×
Home

A Hybrid 3D Printing and Robotic-assisted Embedding Approach for Design and Fabrication of Nerve Cuffs with Integrated Locking Mechanisms

  • Yuxin Tong (a1), Jamie M. Murbach (a2), Vivek Subramanian (a3), Shrirang Chhatre (a3), Francisco Delgado (a2), David C. Martin (a3), Kevin J. Otto (a2) (a4), Mario Romero-Ortega (a5) and Blake N. Johnson (a1) (a6)...
Abstract

The ability to interface electronic materials with the peripheral nervous system is required for stimulation and monitoring of neural signals. Thus, the design and engineering of robust neural interfaces that maintain material-tissue contact in the presence of material or tissue micromotion offer the potential to conduct novel measurements and develop future therapies that require chronic interface with the peripheral nervous system. However, such remains an open challenge given the constraints of existing materials sets and manufacturing approaches for design and fabrication of neural interfaces. Here, we investigated the potential to leverage a rapid prototyping approach for the design and fabrication of nerve cuffs that contain supporting features to mechanically stabilize the interaction between cuff electrodes and peripheral nerve. A hybrid 3D printing and robotic-embedding (i.e., pick-and-place) system was used to design and fabricate silicone nerve cuffs (800 µm diameter) containing conforming platinum (Pt) electrodes. We demonstrate that the electrical impedance of the cuff electrodes can be reduced by deposition of the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on cuff electrodes via a post-processing electropolymerization technique. The computer-aided design and manufacturing approach was also used to design and integrate supporting features to the cuff that mechanically stabilize the interface between the cuff electrodes and the peripheral nerve. Both ‘self-locking’ and suture-assisted locking mechanisms are demonstrated based on the principle of making geometric alterations to the cuff opening via 3D printing. Ultimately, this work shows 3D printing offers considerable opportunity to integrate supporting features, and potentially even novel electronic materials, into nerve cuffs that can support the design and engineering of next generation neural interfaces.

Copyright
Corresponding author
*(Email: bnj@vt.edu)
References
Hide All
1.Murphy, S. V. and Atala, A., Nat. Biotech. 32, 773785 (2014).
2.Kong, Y. L., Gupta, M. K., Johnson, B. N., and McAlpine, M. C., Nano Today 11, 330350 (2016).
3.Macdonald, E., Salas, R., Espalin, D., Perez, M., Aguilera, E., Muse, D. and Wicker, R. B., IEEE Access 2, 234242 (2014).
4.Johnson, B. N., Lancaster, K. Z., Zhen, G., He, J., Gupta, M. K., Kong, Y. L., Engel, E. A., Krick, K. D., Ju, A., Meng, F., Enquist, L. W., Jia, X., and McAlpine, M. C., Adv. Funct. Mater. 25, 62056217 (2015).
5.Johnson, B. N., Lancaster, K. Z., Hogue, I. B., Meng, F., Kong, Y. L., Enquist, L. W., and McAlpine, M. C., Lab Chip 16, 13931400 (2016).
6.Singh, M., Tong, Y., Webster, K., Cesewski, E., Haring, A. P., Laheri, S., Carswell, B., O’Brien, T. J., Aardema, C. H., Senger, R. S., Robertson, J. L., and Johnson, B. N., Lab Chip 17, 25612571 (2017).
7.Haring, A. P., Sontheimer, H., and Johnson, B. N., Stem Cell Rev. Rep., 13, 381406 (2017).
8.Haring, A. P., Khan, A. U., Liu, G., and Johnson, B. N., Adv. Opt. Mater. 5, 1700367 (2017).
9.Gupta, M. K., Meng, F., Johnson, B. N., Kong, Y. L., Tian, L., Yeh, Y.-W., Masters, N., Singamaneni, S., and McAlpine, M. C., Nano Lett. 15, 53215329 (2015).
10.Kang, H.-W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., and Atala, A., Nat. Biotech. 34, 312319 (2016).
11.Kong, Y. L., Tamargo, I., Kim, H., Johnson, B. N., Gupta, M. K., Koh, T.-W., Chin, H.-A., Steingart, D. A., Rand, B. P., and McAlpine, M. C., Nano Lett. 14, 70177023 (2014).
12.Johnson, B. N. and Jia, X., Neural Regen. Res. 11, 15681569 (2016).
13.Pateman, C. J., Harding, A. J., Glen, A., Taylor, C. S., Christmas, C. R., Robinson, P. P., Rimmer, S., Boissonade, F. M., Claeyssens, F., and Haycock, J. W., Biomaterials 49, 7789 (2015).
14.Lozano, R., Stevens, L., Thompson, B. C., Gilmore, K. J., Gorkin Iii, R., Stewart, E. M., in het Panhuis, M., Romero-Ortega, M., and Wallace, G. G., Biomaterials 67, 264273 (2015).
15.Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C., and Kipke, D. R., J. Neural Eng. 3, 5970 (2006).
16.Cui, X. and Martin, D. C., Sens. Actuators B 89, 92102 (2003).
17.Wilks, S. J., Woolley, A. J., Ouyang, L., Martin, D.C., and Otto, K. J., Conf. Proc. IEEE Eng. Med. Biol. Soc., 5412-5415 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

MRS Advances
  • ISSN: -
  • EISSN: 2059-8521
  • URL: /core/journals/mrs-advances
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed