Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T03:04:26.968Z Has data issue: false hasContentIssue false

Immobilization of chloroplasts from grass within a silica matrix synthetized by HIPE method

Published online by Cambridge University Press:  24 January 2020

Andrea Vaca-Oviedo
Affiliation:
University of Investigation and Experimental Technology Yachay, Chemical Science and Engineering School, San Miguel de Urcuquí, Hacienda San José S/N y Proyecto Yachay, Urcuquí, Ecuador. asommer@yachaytech.edu.ec.
Jérémy Causse
Affiliation:
Institut de Chimie Séparative De Marcoule, Laboratoire des Nanomatériaux pour l’Energie et le Recyclage UMR5257, 30207 Bagnols sur Cèze, France CEA, France.
Alicia Sommer-Márquez*
Affiliation:
University of Investigation and Experimental Technology Yachay, Chemical Science and Engineering School, San Miguel de Urcuquí, Hacienda San José S/N y Proyecto Yachay, Urcuquí, Ecuador. asommer@yachaytech.edu.ec.
Get access

Abstract

The deficient disposition of the pruning waste, from grass (Poaceae), has been converted into a considerable environmental problem since it is discarded in common garbage dumps. As a result, gases and lixiviates are generated producing a negative impact on the environment. This project takes advantage of these residues to isolate their chloroplasts, with the aim of subsequently developing bioreactors that absorb CO2. The encapsulation of grass chloroplasts into silica monolith with a hierarchical texture, using high internal phase emulsion (HIPE) method was carried out. The isolated chloroplasts were analysed by UV-Vis spectroscopy to estimate the amount of chlorophylls a and b present in the grass. Moreover, the synthesized samples were characterized by fluorescence spectroscopy for monitoring their photosynthetic activity, having an activity up to at least 90 days.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brodelius, P., Deus, B., Mosbach, K., and Zenk, M.H., FEBS Lett. 103, 93 (1979).10.1016/0014-5793(79)81257-0CrossRefGoogle Scholar
Hall, D.O., Rao, K.K., and Park, I.H., in Stud. Environ. Sci. (1991), pp. 259275.CrossRefGoogle Scholar
Yang, X.Y., Tian, G., Jiang, N., and Su, B.L., Energy Environ. Sci. 5, 5540 (2012).CrossRefGoogle Scholar
Karube, I., Otsuka, T., Kayano, H., Matsunaga, T., and Suzuki, S., Biotechnol. Bioeng. 22, 2655 (1980).CrossRefGoogle Scholar
Hara, M., Iazvovskaia, S., Ohkawa, H., Asada, Y., and Miyake, J., J. Biosci. Bioeng. 87, 793 (1999).CrossRefGoogle Scholar
Shen, S., Lu, Y., Li, X., Liu, X., Chen, J.G., and Hu, D., Colloids Surfaces A Physicochem. Eng. Asp. 522, 569 (2017).CrossRefGoogle Scholar
Rooke, J.C., Meunier, C., Léonard, A., and Su, B.-L., Pure Appl. Chem. 80, 2345 (2008).10.1351/pac200880112345CrossRefGoogle Scholar
Simó, G., Fernández‐Fernández, E., Vila‐Crespo, J., Ruipérez, V., and Rodríguez‐Nogales, J.M., Carbohydr. Polym. 170, 1 (2017).CrossRefGoogle Scholar
Meunier, C.F., Van Cutsem, P., Kwon, Y.U., and Su, B.L., J. Mater. Chem. 19, 4131 (2009).CrossRefGoogle Scholar
Nassif, N. and Livage, J., Chem. Soc. Rev. 40, 849 (2011).CrossRefGoogle Scholar
Shen, S., Lu, Y., Li, X., Liu, X., Chen, J.-G., and Hu, D., Colloids Surfaces A Physicochem. Eng. Asp. 522, 569 (2017).CrossRefGoogle Scholar
Meunier, C.F., Rooke, J.C., Léonard, A., Van Cutsem, P., and Su, B.-L., J. Mater. Chem. 20, 929 (2010).CrossRefGoogle Scholar
Carn, F., Colin, A., Achard, M.F., Deleuze, H., Sellier, E., Birot, M., and Backov, R., J. Mater. Chem. 14, 1370 (2004).CrossRefGoogle Scholar
Feinle, A., Elsaesser, M.S., and Hüsing, N., Chem. Soc. Rev. 45, 3377 (2016).CrossRefGoogle Scholar
Sheikh, A.Q., AshokK, P.., and Ganai, B.A., (2017).Google Scholar
Carter, G.A. and Knapp, A.K., Am. J. Bot. 88, 677 (2001).CrossRefGoogle Scholar
Blankenship, R.E., Molecular Mechanisms of Photosynthesis, (2008).Google Scholar
Sommer-Márquez, A., Lerner, D.A., Fetter, G., Bosch, P., Tichit, D. and Palomares, E., Dalton Trans. 43, 10521 (2014).CrossRefGoogle Scholar
Itoh, T., Yano, K., Inada, Y., and Fukushima, Y., J. Am Chem. Soc. 124, 13437 (2004).CrossRefGoogle Scholar